
HTSeq Documentation
Release 0.8.0

Simon Anders

Jul 04, 2017

Contents

1 HTSeq: Analysing high-throughput sequencing data with Python 1
1.1 Paper . 1
1.2 Documentation overview . 1
1.3 Author . 3
1.4 License . 3

2 Prequisites and installation 5
2.1 Installation on Linux . 5
2.2 Installation on MacOS X . 6
2.3 MS Windows . 7

3 A tour through HTSeq 9
3.1 Reading in reads . 9
3.2 Reading and writing BAM files . 12
3.3 Genomic intervals and genomic arrays . 13
3.4 Counting reads by genes . 16
3.5 And much more . 19

4 A detailed use case: TSS plots 21
4.1 Using the full coverage . 21
4.2 Using indexed BAM files . 26
4.3 Streaming through all reads . 28

5 Counting reads 31
5.1 Preparing the feature array . 31
5.2 Counting ungapped single-end reads . 32
5.3 Counting gapped single-end reads . 33

6 Reference overview 37
6.1 Parser and record classes . 37
6.2 Specifying genomic positions and intervals . 38
6.3 Genomic arrays . 38
6.4 Special features for SAM/BAM files . 38

7 Sequences and FASTA/FASTQ files 41
7.1 Sequence . 41
7.2 SequenceWithQualities . 44

i

7.3 FastaReader . 45
7.4 FastqReader . 46

8 Genomic intervals and genomic arrays 47
8.1 GenomicInterval . 47
8.2 GenomicPosition . 49
8.3 GenomicArray . 49
8.4 GenomicArrayOfSets . 52

9 Read alignments 53
9.1 Concepts . 53
9.2 Parser classes . 54
9.3 Alignment and AlignmentWithSequenceReversal . 54
9.4 Format-specific Alignment classes . 55
9.5 Multiple alignments . 57
9.6 CIGAR strings . 57

10 Features 59
10.1 GFF_Reader and GenomicFeature . 60

11 Other parsers 63
11.1 VCF_Reader and VariantCall . 63
11.2 Wiggle Reader . 65
11.3 BED Reader . 65

12 Miscellaneous 67
12.1 FileOrSequence . 67
12.2 Version . 67

13 Quality Assessment with htseq-qa 69
13.1 Plot . 69
13.2 Usage . 70

14 Counting reads in features with htseq-count 73
14.1 Usage . 74

15 Version history 79
15.1 Version 0.8.0 . 79
15.2 Version 0.7.2 . 79
15.3 Version 0.7.1 . 79
15.4 Version 0.7.0 . 80
15.5 Version 0.6.1 . 80
15.6 Version 0.6.0 . 80
15.7 Version 0.5.4 . 81
15.8 Version 0.5.3 . 81
15.9 Version 0.5.2 . 82
15.10 Version 0.5.1 . 82
15.11 Version 0.5.0 . 82
15.12 Version 0.4.7 . 83
15.13 Version 0.4.6 . 83
15.14 Version 0.4.5 . 84
15.15 Version 0.4.4 . 85
15.16 Version 0.4.3 . 85
15.17 Version 0.4.2 . 86
15.18 Version 0.4.1 . 86

ii

15.19 Version 0.4.0 . 86
15.20 Version 0.3.7 . 87

16 Notes for Contributors 89
16.1 Source code . 89
16.2 Languages . 89
16.3 Build process . 90
16.4 Distributing . 90
16.5 Files . 90

iii

iv

CHAPTER 1

HTSeq: Analysing high-throughput sequencing data with Python

HTSeq is a Python package that provides infrastructure to process data from high-throughput sequencing assays.

• Please see the chapter A tour through HTSeq first for an overview on the kind of analysis you can do with HTSeq
and the design of the package, and then look at the reference documentation.

• While the main purpose of HTSeq is to allow you to write your own analysis scripts, customized to your needs,
there are also a couple of stand-alone scripts for common tasks that can be used without any Python knowledge.
See the Scripts section in the overview below for what is available.

• For downloads and installation instructions, see Prequisites and installation.

Paper

HTSeq is described in the following publication:

Simon Anders, Paul Theodor Pyl, Wolfgang Huber
HTSeq — A Python framework to work with high-throughput sequencing data
Bioinformatics (2014), in print, online at doi:10.1093/bioinformatics/btu638

If you use HTSeq in research, please cite this paper in your publication.

Documentation overview

• Prequisites and installation

Download links and installation instructions can be found here

• A tour through HTSeq

The Tour shows you how to get started. It explains how to install HTSeq, and then demonstrates typical analysis
steps with explicit examples. Read this first, and then see the Reference for details.

1

https://doi.org/10.1093/bioinformatics/btu638

HTSeq Documentation, Release 0.8.0

• A detailed use case: TSS plots

This chapter explains typical usage patterns for HTSeq by explaining in detail three different solutions to the
same programming task.

• Counting reads

This chapter explorer in detail the use case of counting the overlap of reads with annotation features and explains
how to implement custom logic by writing on’s own customized counting scripts

• Reference documentation

The various classes of HTSeq are described here.

– Reference overview

A brief overview over all classes.

– Sequences and FASTA/FASTQ files

In order to represent sequences and reads (i.e., sequences with base-call quality information), the
classes Sequence and SequenceWithQualities are used. The classes FastaReader and
FastqReader allow to parse FASTA and FASTQ files.

– Genomic intervals and genomic arrays

The classes GenomicInterval and GenomicPosition represent intervals and positions in a
genome. The class GenomicArray is an all-purpose container with easy access via a genomic inter-
val or position, and GenomicArrayOfSets is a special case useful to deal with genomic features (such
as genes, exons, etc.)

– Read alignments

To process the output from short read aligners in various formats (e.g., SAM), the classes described here
are used, to represent output files and alignments, i.e., reads with their alignment information.

– Features

The classes GenomicFeature and GFF_Reader help to deal with genomic annotation data.

– Other parsers

This page describes classes to parse VCF, Wiggle and BED files.

– Miscellaneous

• Scripts

The following scripts can be used without any Python knowledge.

– Quality Assessment with htseq-qa

Given a FASTQ or SAM file, this script produces a PDF file with plots depicting the base calls and base-
call qualities by position in the read. This is useful to assess the technical quality of a sequencing run.

– Counting reads in features with htseq-count

Given a SAM file with alignments and a GFF file with genomic features, this script counts how many reads
map to each feature.

• Appendices

• Version history

• Notes for Contributors

• Table of Contents

2 Chapter 1. HTSeq: Analysing high-throughput sequencing data with Python

HTSeq Documentation, Release 0.8.0

• genindex

Author

HTSeq is developed by Simon Anders at EMBL Heidelberg (Genome Biology Unit). Please do not hesitate to contact
me (anders at embl dot de) if you have any comments or questions.

License

HTSeq is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

The full text of the GNU General Public License, version 3, can be found here: http://www.gnu.org/licenses/gpl-3.
0-standalone.html

1.3. Author 3

http://www.embl.de/research/units/genome_biology/huber/members/index.php?s_personId=6001
http://www.embl.de/
http://www.embl.de/research/units/genome_biology/index.html
http://www.gnu.org/licenses/gpl-3.0-standalone.html
http://www.gnu.org/licenses/gpl-3.0-standalone.html

HTSeq Documentation, Release 0.8.0

4 Chapter 1. HTSeq: Analysing high-throughput sequencing data with Python

CHAPTER 2

Prequisites and installation

HTSeq is available from the Python Package Index (PyPI):

To use HTSeq, you need Python 2.7 or 3.4 or above (3.0-3.3 are not supported), together with:

• NumPy, a commonly used Python package for numerical calculations

• Pysam, a Python interface to samtools.

• To make plots you will need matplotlib, a plotting library.

At the moment, HTSeq supports Linux and OSX but not Windows operating systems, because one of the key depen-
dencies, Pysam, lacks automatic support and none of the HTSeq authors have access to such a machine. However, it
might work with some work, if you need support for this open an issue on our Github page.

HTSeq follows install conventions of many Python packages. In the best case, it should install from PyPI like this:

pip install HTSeq

If this does not work, please open an issue on Github and also try the instructions below.

Installation on Linux

You can choose to install HTSeq via your distribution packages or via pip. The former is generally recommended but
might be updated less often than the pip version.

Distribution package manager

• Ubuntu (e.g. for Python 2.7):

sudo apt-get install build-essential python2.7-dev python-numpy python-matplotlib
→˓python-pysam python-htseq

• Arch (e.g. using aura, you can grab the AUR packages otherwise):

5

http://pypi.python.org/pypi/HTSeq
http://www.python.org/
http://numpy.scipy.org/
https://github.com/pysam-developers/pysam
http://www.htslib.org/
http://matplotlib.org/
https://github.com/pysam-developers/pysam
https://github.com/simon-anders/htseq
https://github.com/simon-anders/htseq

HTSeq Documentation, Release 0.8.0

sudo pacman -S python python-numpy python-matplotlib
sudo aura -A python-pysam python-htseq

PIP

PIP should take care of the requirements for you:

pip install HTSeq

Installing from GIT

If you want to install a development version, just clone the git repository, switch to the branch/commit you wish, and
use setuptools:

python setup.py build
python setup.py install

Typical setuptools options are available (e.g. --prefix, --user).

To test the installation, change to another director than the build directory, start Python (by typing python or
python2.7) and then try whether typing import HTSeq causes an error meesage.

Installation on MacOS X

Mac users should install NumPy as explained here in the NumPy/SciPy documentation. Note that you need to install
Xcode to be able to compile NumPy. Due to the mess that Apple recently made out of Xcode, the whole process
may be a slight bit more cumbersome than necessary, especially if you work with OSX Lion, so read the instructions
carefully.

If you want to produce plots or use htseq-qa, you will also need matplotlib. (For htseq-count, it is not required.) There
seems to be a binary package (a “Python egg”) available on the matplotlib SourceForge page.

To install HTSeq itself, download the source package from the HTSeq PyPI page, unpack the tarball, go into the
directory with the unpacked files and type there:

python setup.py build

to compile HTSeq. If you get an error regarding the availability of a C compiler, you may need to set environment
variables to point Python to the . The NumPy/SciPy installation instructions above cover this topic well and apply
here, too, so simply do the same as you did to install NumPy.

Once building has been successful, use:

python setup.py --user

to install HTSeq for the current users. To make HTSeq available to all users, use instead:

python setup.py build
sudo python setup.py install

To test the installation, change to another director than the build directory, start Python (by typing python) and then
try whether typing import HTSeq causes an error meesage.

6 Chapter 2. Prequisites and installation

http://www.scipy.org/Installing_SciPy/Mac_OS_X
http://pypi.python.org/pypi/HTSeq

HTSeq Documentation, Release 0.8.0

MS Windows

If you have not yet installed Python, do so first. You can find an automatic installer for Windows on the Python
download page. Make sure to use Python 2.7, not Python 3.3.

Then install the newest version of NumPy. Look on NumPy’s PyPI page for the automatic installer.

If you want to produce plots or use htseq-qa, you will also need matplotlib. (For htseq-count, it is not required.) Follow
the installation instructions on their web page.

To install HTSeq itself, simply download the Windows installer from the HTSeq download page and run it.

To test your installation, start Python and then try whether typing import HTSeq causes an error meesage.

If you get the error message “ImportError: DLL load failed”, you are most likely missing the file MSVCR110.DLL
on your system, which you can get by downloading and installing the file “vcredist_x86.exe” from this page.

2.3. MS Windows 7

http://www.python.org/getit/
http://www.python.org/getit/
https://pypi.python.org/pypi/numpy
http://pypi.python.org/pypi/HTSeq
http://www.microsoft.com/en-us/download/details.aspx?id=30679

HTSeq Documentation, Release 0.8.0

8 Chapter 2. Prequisites and installation

CHAPTER 3

A tour through HTSeq

In the analysis of high-throughput sequencing data, it is often necessary to write custom scripts to form the “glue”
between tools or to perform specific analysis tasks. HTSeq is a Python package to facilitate this.

This tour demonstrates the functionality of HTSeq by performing a number of common analysis tasks:

• Getting statistical summaries about the base-call quality scores to study the data quality.

• Calculating a coverage vector and exporting it for visualization in a genome browser.

• Reading in annotation data from a GFF file.

• Assigning aligned reads from an RNA-Seq experiments to exons and genes.

The following description assumes that the reader is familiar with Python and with HTS data. (For a good and not too
lengthy introduction to Python, read the Python Tutorial on the Python web site.)

If you want to try out the examples on your own system, you can download the example files used from here: HT-
Seq_example_data.tgz

Reading in reads

In the example data, a FASTQ file is provided with example reads from a yeast RNA-Seq experiment. The
file yeast_RNASeq_excerpt_sequence.txt is an excerpt of the _sequence.txt file produced by the
SolexaPipeline software. We can access it from HTSeq with

>>> import HTSeq
>>> fastq_file = HTSeq.FastqReader("yeast_RNASeq_excerpt_sequence.txt", "solexa")

The first argument is the file name. The optional second argument indicates the encoding for the quality string. If you
omit, the default (“phred”) is used. The example data, however, is from an older experiment, and hence encoded in the
offset-64 format that the Solexa/Illumina software pipeline used before version 1.8. (A third option is “solexa_old”,
for data from the Solexa pipeline prior to version 1.3.)

The variable fastq_file is now an object of class FastqReader, which refers to the file:

9

http://www-huber.embl.de/users/anders/HTSeq/HTSeq_example_data.tgz
http://www-huber.embl.de/users/anders/HTSeq/HTSeq_example_data.tgz

HTSeq Documentation, Release 0.8.0

>>> fastq_file
<FastqReader object, connected to file name 'yeast_RNASeq_excerpt_sequence.txt'>

When used in a for loop, it generates an iterator of objects representing the reads. Here, we use the islice function
from itertools to cut after 10 reads.

>>> import itertools
>>> for read in itertools.islice(fastq_file, 10):
... print(read)
CTTACGTTTTCTGTATCAATACTCGATTTATCATCT
AATTGGTTTCCCCGCCGAGACCGTACACTACCAGCC
TTTGGACTTGATTGTTGACGCTATCAAGGCTGCTGG
ATCTCATATACAATGTCTATCCCAGAAACTCAAAAA
AAAGTTCGAATTAGGCCGTCAACCAGCCAACACCAA
GGAGCAAATTGCCAACAAGGAAAGGCAATATAACGA
AGACAAGCTGCTGCTTCTGTTGTTCCATCTGCTTCC
AAGAGGTTTGAGATCTTTGACCACCGTCTGGGCTGA
GTCATCACTATCAGAGAAGGTAGAACATTGGAAGAT
ACTTTTAAAGATTGGCCAAGAATTGGGGATTGAAGA

Of course, there is more to a read than its sequence. The variable read still contains the tenth read, and we can
examine it:

>>> read
<SequenceWithQualities object 'HWI-EAS225:1:10:1284:142#0/1'>

A Sequence object has two slots, called seq and name. This object is a SequenceWithQualities, and it also
has a slot qual:

>>> read.name
'HWI-EAS225:1:10:1284:142#0/1'
>>> read.seq
b'ACTTTTAAAGATTGGCCAAGAATTGGGGATTGAAGA'
>>> read.qual
array([33, 33, 33, 33, 33, 33, 29, 27, 29, 32, 29, 30, 30, 21, 22, 25, 25,

25, 23, 28, 24, 24, 29, 29, 29, 25, 28, 24, 24, 26, 25, 25, 24, 24,
24, 24], dtype=uint8)

The values in the quality array are, for each base in the sequence, the Phred score for the correctness of the base.

As a first simple example for the use of HTSeq, we now calculate the average quality score for each position in the
reads by adding up the qual arrays from all reads and the dividing by the number of reads. We sum everything up in
the variable qualsum, a numpy array of integers:

>>> import numpy
>>> len(read)
36
>>> qualsum = numpy.zeros(len(read), numpy.int)

Then we loop through the fastq file, adding up the quality scores and counting the reads:

>>> nreads = 0
>>> for read in fastq_file:
... qualsum += read.qual
... nreads += 1

The average qualities are hence:

10 Chapter 3. A tour through HTSeq

HTSeq Documentation, Release 0.8.0

>>> qualsum / float(nreads)
array([31.56838274, 30.08288332, 29.4375375 , 29.00432017,

28.55290212, 28.26825073, 28.46681867, 27.59082363,
27.34097364, 27.57330293, 27.11784471, 27.19432777,
26.84023361, 26.76267051, 26.44885795, 26.79135165,
26.42901716, 26.49849994, 26.13604544, 25.95823833,
25.54922197, 26.20460818, 25.42333693, 25.72298892,
25.04164167, 24.75151006, 24.48561942, 24.27061082,
24.10720429, 23.68026721, 23.52034081, 23.49437978,
23.11076443, 22.5576223 , 22.43549742, 22.62354494])

If you have matplotlib installed, you can plot these numbers.

>>> from matplotlib import pyplot
>>> pyplot.plot(qualsum / nreads)
>>> pyplot.show()

This is a very simple way of looking at the quality scores. For more sophisticated quality-control techniques, see the
Chapter Quality Assessment with htseq-qa.

Instead of a FASTQ file, you might have a SAM file, with the reads already aligned. The SAM_Reader class can read
such data.

>>> alignment_file = HTSeq.SAM_Reader("yeast_RNASeq_excerpt.sam")

If we are only interested in the qualities, we can rewrite the commands from above to use the alignment_file:

>>> nreads = 0
>>> for aln in alignment_file:

3.1. Reading in reads 11

http://matplotlib.sourceforge.net/

HTSeq Documentation, Release 0.8.0

... qualsum += aln.read.qual

... nreads += 1

We have simple replaced the FastqReader with a SolexaExportReader, which iterates, when used in a
for loop, over SolexaExportAlignment objects. Each of these contain a field read that contains the
SequenceWithQualities object, as before. There are more parses, for example the SAM_Reader that can
read SAM files, and generates SAM_Alignment objects. As all Alignment objects contain a read slot with
the SequenceWithQualities, we can use the same code with any alignment file for which a parser has been
provided, and all we have to change is the name of the reader class in the first line.

The other fields that all Alignment objects contain, is a Boolean called aligned that tells us whether the read
has been aligned at all, and a field called iv (for “interval”) that shows where the read was aligned to. We use this
information in the next section.

Reading and writing BAM files

HTSeq exposes the samtools API trough pysam, enabling you to read and write BAM files. A simple example of the
usage is given here:

>>> bam_reader = HTSeq.BAM_Reader("SRR001432_head_sorted.bam")
>>> for a in itertools.islice(bam_reader, 5): # printing first 5 reads
... print(a)
<SAM_Alignment object: Read 'SRR001432.165255 USI-EAS21_0008_3445:8:4:718:439
→˓length=25' aligned to 1:[29267,29292)/->
<SAM_Alignment object: Read 'SRR001432.238475 USI-EAS21_0008_3445:8:6:888:446
→˓length=25' aligned to 1:[62943,62968)/->
<SAM_Alignment object: Read 'SRR001432.116075 USI-EAS21_0008_3445:8:3:657:64 length=25
→˓' aligned to 1:[86980,87005)/->
<SAM_Alignment object: Read 'SRR001432.159692 USI-EAS21_0008_3445:8:4:618:821
→˓length=25' aligned to 1:[91360,91385)/->
<SAM_Alignment object: Read 'SRR001432.249247 USI-EAS21_0008_3445:8:6:144:741
→˓length=25' aligned to 1:[97059,97084)/->

>>> bam_writer = HTSeq.BAM_Writer.from_BAM_Reader("region.bam", bam_reader) #set-up
→˓BAM_Writer with same header as reader
>>> for a in bam_reader.fetch(region = "1:249000000-249200000"): #fetching reads in
→˓a region
... print("Writing Alignment", a, "to file", bam_writer.filename)
... bam_writer.write(a)
Writing Alignment <SAM_Alignment object: Read 'SRR001432.104735 USI-EAS21_0008_
→˓3445:8:3:934:653 length=25' aligned to 1:[249085369,249085394)/-> to file region.bam
Writing Alignment <SAM_Alignment object: Read 'SRR001432.280764 USI-EAS21_0008_
→˓3445:8:7:479:581 length=25' aligned to 1:[249105864,249105889)/-> to file region.bam
...
Writing Alignment <SAM_Alignment object: Read 'SRR001432.248967 USI-EAS21_0008_
→˓3445:8:6:862:756 length=25' aligned to 1:[249167916,249167941)/-> to file region.bam
>>> bam_writer.close()

12 Chapter 3. A tour through HTSeq

HTSeq Documentation, Release 0.8.0

Genomic intervals and genomic arrays

Genomic intervals

At the end of the previous section, we looped through a SAM file. In the for loop, the SAM_Reader object yields for
each alignment line in the SAM file an object of class SAM_Alignment. Let’s have closer look at such an object,
still found in the variable aln:

>>> aln
<SAM_Alignment object: Read 'HWI-EAS225:1:11:76:63#0/1' aligned to IV:[246048,246084)/
→˓+>

Every alignment object has a slot read, that contains a SequenceWithQualities object as described above

>>> aln.read
<SequenceWithQualities object 'HWI-EAS225:1:11:76:63#0/1'>
>>> aln.read.name
'HWI-EAS225:1:11:76:63#0/1'
>>> aln.read.seq
b'ACTGTAAATACTTTTCAGAAGAGATTTGTAGAATCC'
>>> aln.read.qualstr
b'BBBB@B?AB?>BAAA@A@>=?=?9=?=;9>988<::'
>>> aln.read.qual
array([33, 33, 33, 33, 31, 33, 30, 32, 33, 30, 29, 33, 32, 32, 32, 31, 32,

31, 29, 28, 30, 28, 30, 24, 28, 30, 28, 26, 24, 29, 24, 23, 23, 27,
25, 25], dtype=uint8)

Furthermore, every alignment object has a slot iv (for “interval”) that describes where the read was aligned to (if it
was aligned). To hold this information, an object of class GenomicInterval is used that has slots as follows:

>>> aln.iv
<GenomicInterval object 'IV', [246048,246084), strand '+'>
>>> aln.iv.chrom
'IV'
>>> aln.iv.start
246048
>>> aln.iv.end
246084
>>> aln.iv.strand
'+'

Note that all coordinates in HTSeq are zero-based (following Python convention), i.e. the first base of a chromosome
has index 0. Also, all intervals are half-open, i.e., the end position is not included. The strand can be one of '+',
'-', and '.', where the latter indicates that the strand is not defined or not of interest.

Apart from these slots, a GenomicInterval object has a number of convenience functions, see the reference.

Note that a SAM file may contain reads that could not be aligned. For these, the iv slot contains None. To test whether
an alignment is present, you can also query the slot aligned, which is a Boolean.

Genomic Arrays

The GenomicArray data structure is a convenient way to store and retrieve information associated with a genomic
position or genomic interval. In a GenomicArray, data (either simple scalar data like a number) or can be stored at a
place identified by a GenomicInterval. We demonstrate with a toy example.

3.3. Genomic intervals and genomic arrays 13

HTSeq Documentation, Release 0.8.0

Assume you have a genome with three chromosomes with the following lengths (in bp):

>>> chromlens = { 'chr1': 3000, 'chr2': 2000, 'chr1': 1000 }

We wish to store integer data (typecode “i”)

>>> ga = HTSeq.GenomicArray(chromlens, stranded=False, typecode="i")

Now, we can assign the value 5 to an interval:

>>> iv = HTSeq.GenomicInterval("chr1", 100, 120, ".")
>>> ga[iv] = 5

We may want to add the value 3 to an interval overlapping with the previous one:

>>> iv = HTSeq.GenomicInterval("chr1", 110, 135, ".")
>>> ga[iv] += 3

To see the effect of this, we read out an interval encompassing the region that we changed. To display the data, we
convert to a list:

>>> iv = HTSeq.GenomicInterval("chr1", 90, 140, ".")
>>> list(ga[iv])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0,
0, 0, 0, 0]

It would be wasteful to store all these repeats of the same value as it is displayed here. Hence, GenomicArray objects
use by default so-called StepVectors that store the data internally in “steps” of constant value. Often, reading out the
data that way is useful, too:

>>> for iv2, value in ga[iv].steps():
... print(iv2, value)
...
chr1:[90,100)/. 0
chr1:[100,110)/. 5
chr1:[110,120)/. 8
chr1:[120,135)/. 3
chr1:[135,140)/. 0

If the steps become very small, storing them instead of just the unrolled data may become inefficient. In this case,
GenomicArrays should be instantiated with storage mode ndarray to get a normal numpy array as backend, or with
storage mode memmap to use a file/memory-mapped numpy array (see reference for details).

In the following section, we demonstrate how a GenomicArray can be used to calculate a coverage vector. In the
section after that, we see how a GenomicArray with type code ‘O’ (which stands for ‘object’, i.e., any kind of data,
not just numbers) is useful to organize metadata.

Calculating coverage vectors

By a “coverage vector”, we mean a vector (one-dimensional array) of the length of a chromosome, where each element
counts how many reads cover the corresponding base pair in their alignment. A GenomicArray can conveniently
bundle the coverage vectors for all the chromosomes in a genome.

Hence, we start by defining a GenomicArray:

14 Chapter 3. A tour through HTSeq

HTSeq Documentation, Release 0.8.0

>>> cvg = HTSeq.GenomicArray("auto", stranded=True, typecode="i")

Instead of listing all chromosomes, we instruct the GenomicArray to add chromosome vectors as needed, by specifiyng
"auto". As we set stranded=True, there are now two chromosome vectors for each chromosome, all holding
integer values (typecode="i"). They all have an “infinte” length as we did not specify the actual lengths of the
chromosomes.

To build the coverage vectors, we now simply iterate through all the reads and add the value 1 at the interval to which
each read was aligned to:

>>> alignment_file = HTSeq.SAM_Reader("yeast_RNASeq_excerpt.sam")
>>> cvg = HTSeq.GenomicArray("auto", stranded=True, typecode='i')
>>> for alngt in alignment_file:
... if alngt.aligned:
... cvg[alngt.iv] += 1

We can plot an excerpt of this with:

>>> pyplot.plot(list(cvg[HTSeq.GenomicInterval("III", 200000, 500000, "+")]))

However, a proper genome browser gives a better impression of the data. The following commands write two Bed-
Graph (Wiggle) files, one for the plus and one for the minus strands:

>>> cvg.write_bedgraph_file("plus.wig", "+")
>>> cvg.write_bedgraph_file("minus.wig", "-")

These two files can then be viewed in a genome browser (e.g. IGB or IGV), alongside the annotation from a GFF file
(see below).

GenomicArrayOfSets

Another use of genomic arrays is to store annotation data. In the next section, we will use this to store the position of
all exons of the yeast genome in a genomic array and then go through all our reads, querying the array for each read
to report the exons overlapped by this read.

In principle, we could use a genomic array with type code ‘O’ (for object), which can store arbitrary Python objects.
However, there might be positions in the genome that are covered by more than one gene, and hence, we better use a
data structure that can accommodate overlapping features.

The class:GenomicArrayOfSets is meant for this purpose. For each step, it stores a set of objects. To illustrate this,
we initialize a GenomicArrayOfSets and then store three features in it:

>>> gas = HTSeq.GenomicArrayOfSets("auto", stranded=False)
>>> gas[HTSeq.GenomicInterval("chr1", 100, 250)] += "A"
>>> gas[HTSeq.GenomicInterval("chr1", 360, 640)] += "A"
>>> gas[HTSeq.GenomicInterval("chr1", 510, 950)] += "B"

These three features represent three exons of two genes, arranged as shown in this figure:

Note that we used +=, not just =, above when adding the features. With a GenomicArrayOfSets, you need to always
use the += operator (rather than =), so that the values gets added to the step’s set.

Now consider a read that aligns to the following interval (represented in the figure above by the light blue line):

3.3. Genomic intervals and genomic arrays 15

http://igb.bioviz.org/
http://www.broadinstitute.org/igv/

HTSeq Documentation, Release 0.8.0

>>> read_iv = HTSeq.GenomicInterval("chr1", 450, 800)

We can query the GenomicArrayOfSets, as before:

>>> for iv, val in gas[read_iv].steps():
... print(iv, sorted(val))
chr1:[450,510)/. ['A']
chr1:[510,640)/. ['A', 'B']
chr1:[640,800)/. ['B']

The interval has been subdivided into three pieces, corresponding to the three different sets that it overlaps, namely
first only A, then A and B, and finally only B.

You might be only interested in the set of all features that the read interval overlaps. To this end, just form the set
union of the three reported sets, using Python’s set union operator (|):

>>> fset = set()
>>> for iv, val in gas[read_iv].steps():
... fset |= val
>>> print(sorted(fset))
['A', 'B']

Experienced Python developers will recognize that the for loop can be replaced with a single line using a generator
comprehension and the reduce function:

>>> sorted(set.union(*[val for iv, val in gas[read_iv].steps()]))
['A', 'B']

We will come back to the constructs in the next section, after a brief detour on how to read GTF files.

Counting reads by genes

As the example data is from an RNA-Seq experiment, we want to know how many reads fall into the exonic regions of
each gene. For this purpose we first need to read in information about the positions of the exons. A convenient source
of such information are the GTF files from Ensembl (to be found here).

These file are in the GTF format, a tightening of the GFF format. HTSeq offers the GFF_Reader class to read in a
GFF file:

>>> gtf_file = HTSeq.GFF_Reader("Saccharomyces_cerevisiae.SGD1.01.56.gtf.gz",
... end_included=True)

The GFF format is, unfortunately, a not very well specified file format. Several standard documents exist, from
different groups, which contradict each other in some points. Most importantly, it is unclear whether a range specified
in a GFF line is supposed to include the base under the “end” position or not. Here, we specied the this file does
include the end. Actually, this is the default for GFF_Reader, so it would not have been necessary to specify it. (Hint,
if you are unsure about your GFF file: The length of most coding exons is divisible by 3. If start-end is divisible by 3,
too, end is not included, if the division leaves a remainder of two, end is included.)

We iterate through this file as follows:

>>> for feature in itertools.islice(gtf_file, 10):
... print(feature)
...
<GenomicFeature: exon 'R0010W' at 2-micron: 251 -> 1523 (strand '+')>
<GenomicFeature: CDS 'R0010W' at 2-micron: 251 -> 1520 (strand '+')>

16 Chapter 3. A tour through HTSeq

http://www.ensembl.org/index.html
ftp://ftp.ensembl.org/pub/current_gtf/
http://mblab.wustl.edu/GTF22.html
http://www.sanger.ac.uk/resources/software/gff/spec.html

HTSeq Documentation, Release 0.8.0

<GenomicFeature: start_codon 'R0010W' at 2-micron: 251 -> 254 (strand '+')>
<GenomicFeature: stop_codon 'R0010W' at 2-micron: 1520 -> 1523 (strand '+')>
<GenomicFeature: exon 'R0020C' at 2-micron: 3007 -> 1885 (strand '-')>
<GenomicFeature: CDS 'R0020C' at 2-micron: 3007 -> 1888 (strand '-')>
<GenomicFeature: start_codon 'R0020C' at 2-micron: 3007 -> 3004 (strand '-')>
<GenomicFeature: stop_codon 'R0020C' at 2-micron: 1888 -> 1885 (strand '-')>
<GenomicFeature: exon 'R0030W' at 2-micron: 3270 -> 3816 (strand '+')>
<GenomicFeature: CDS 'R0030W' at 2-micron: 3270 -> 3813 (strand '+')>

The feature variable is filled with objects of class GenomicFeature. If you compare the coordinated with the
original file, you will notice that the GFF_Reader has subtracted one from all starts. This is because all file parsers
in HTSeq adjust coordinates as necessary to fit the Python convention, which is that indexing starts with zero and the
end is not included. Hence, you can immediately compare coordinates from different data formats without having to
worry about subtleties like the fact that GFF is one-based and SAM is zero-based.

As with all Python objects, the dir function shows us the slots and functions of our loop variable feature and so
allow us to inspect what data it provides:

>>> dir(feature)
['__class__', ..., '__weakref__', 'attr', 'frame', 'get_gff_line',
'iv', 'name', 'score', 'source', 'type']

Ignoring the attributes starting with an underscore, we can see now how to access the information stored in the GFF
file. The information from the columns of the GFF table is accessible as follows:

>>> feature.iv
<GenomicInterval object '2-micron', [3270,3813), strand '+'>
>>> feature.source
'protein_coding'
>>> feature.type
'CDS'
>>> feature.score
'.'

The last column (the attributes) is parsed and presented as a dict:

>>> sorted(feature.attr.items())
[('exon_number', '1'),
('gene_id', 'R0030W'),
('gene_name', 'RAF1'),
('protein_id', 'R0030W'),
('transcript_id', 'R0030W'),
('transcript_name', 'RAF1')]

The very first attribute in this column is usually some kind of ID, hence it is stored in the slot name:

>>> feature.name
'R0030W'

To deal with this data, we will use the GenomicArrayOfSets introuced in the previous section.

>>> exons = HTSeq.GenomicArrayOfSets("auto", stranded=False)

However, our RNA-Seq experiment was not strand-specific, i.e., we do not know whether the reads came from the
plus or the minus strand. This is why we defined the GenomicArrayOfSet as non-stranded (stranded=False
in the instantiation of exons above), instructing it to ignore all strand information. Teherfore, we now have many
overlapping genes, but the GenomicArrayOfSets will handle this.

3.4. Counting reads by genes 17

HTSeq Documentation, Release 0.8.0

>>> for feature in gtf_file:
... if feature.type == "exon":
... exons[feature.iv] += feature.name

Nate that, we only store the gene name this time, as this will be more convenient later.

Assume we have a read covering this interval:

>>> iv = HTSeq.GenomicInterval("III", 23850, 23950, ".")

Its left half covers two genes (YCL058C, YCL058W-A), but its right half only YCL058C because YCL058W-A end
in the middle of the read:

>>> [(st[0], sorted(st[1])) for st in exons[iv].steps()]
[(<GenomicInterval object 'III', [23850,23925), strand '.'>,

['YCL058C', 'YCL058W-A']),
(<GenomicInterval object 'III', [23925,23950), strand '.'>,

['YCL058C'])]

Assuming the transcription boundaries in our GTF file to be correct, we may conclude that this read is from the gene
that appears in both steps and not from the one that appears in only one of the steps. More generally, whenever a read
overlaps multiple steps (a new step starts wherever a feature starts or ends), we get a set of feature names for each step,
and we have to find the intersection of all these. This can be coded as follows:

>>> iset = None
>>> for iv2, step_set in exons[iv].steps():
... if iset is None:
... iset = step_set.copy()
... else:
... iset.intersection_update(step_set)
...
>>> print(iset)
{'YCL058C'}

When we look at the first step, we make a copy of the steps (in order to not disturb the values stored in exons.) For
the following steps, we use the intersection_update method Python’s standard set class, which performs a
set intersection in place. Afterwards, we have a set with precisely one element. Getting this one element is a tiny bit
cumbersome; to access it, one needs to write:

>>> list(iset)[0]
'YCL058C'

In this way, we can go through all our aligned reads, calculate the intersection set, and, if it contains a single gene
name, add a count for this gene. For the counters, we use a dict, which we initialize with a zero for each gene name:

>>> counts = {}
>>> for feature in gtf_file:
... if feature.type == "exon":
... counts[feature.name] = 0

Now, we can finally count:

>>> sam_file = HTSeq.SAM_Reader("yeast_RNASeq_excerpt.sam")
>>> for alnmt in sam_file:
... if alnmt.aligned:
... iset = None
... for iv2, step_set in exons[alnmt.iv].steps():

18 Chapter 3. A tour through HTSeq

HTSeq Documentation, Release 0.8.0

... if iset is None:

... iset = step_set.copy()

... else:

... iset.intersection_update(step_set)

... if len(iset) == 1:

... counts[list(iset)[0]] += 1

We can now conveniently print the result with:

>>> for name in sorted(counts.keys()):
... print(name, counts[name])
15S_rRNA 0
21S_rRNA 0
HRA1 0
...
YPR048W 2
YPR049C 3
YPR050C 0
YPR051W 1
YPR052C 1
YPR053C 5
YPR054W 0
...
tY(GUA)M2 0
tY(GUA)O 0
tY(GUA)Q 0

Some aligners can output gapped or spliced alignments. In a SAM file, this in encoded in the CIGAR string. HTSeq
has facilities to handle this conveniently, too, with the class CigarOperation. Chapter Counting reads in features
with htseq-count describes a script which offers some further counting schemes.

And much more

This tour is only meant to give an overview. There are many more tasks that can be solved with HTSeq. Have a look
at the reference documentation in the following pages to see what else is there.

3.5. And much more 19

HTSeq Documentation, Release 0.8.0

20 Chapter 3. A tour through HTSeq

CHAPTER 4

A detailed use case: TSS plots

A common task in ChIP-Seq analysis is to get profiles of marks with respect to nearby features. For example, when
analysing histone marks, one is often interested in the position and extend of such marks in the vicinity of transcription
start sites (TSSs). To this end, one commonly calculates the coverage of reads or fragments across the whole genome,
then marks out fixed-size windows centered around the TSSs of all genes, takes the coverages in these windows and
adds them up to a “profile” that has the size of the window. This is a simple operation, which, however, can become
challenging, when working with large genomes and very many reads.

Here, we demonstrate various ways of how data flow can be organized in HTSeq by means of different solutions to
this task.

As example data, we use a short excerpt from the data set by Barski et al. (Cell, 2007, 129:823). We downloaded the
FASTQ file for one of the H3K4me3 samples (Short Read Archive accession number SRR001432), aligned it against
the Homo sapiens genome build GRCh37 with BWA, and provide the start of this file (actually only containing reads
aligned to chromosome 1) as file SRR001432_head.bam with the HTSeq example files. As annotation, we use the
file Homo_sapiens.GRCh37.56_chrom1.gtf, which is the part of the Ensembl GTF file for Homo sapiens for
chromosome 1.

Using the full coverage

We start with the straight-forward way of calculating the full coverage first and then summing up the profile. This can
be done as described in the Tour:

>>> import HTSeq
>>> bamfile = HTSeq.BAM_Reader("SRR001432_head.bam")
>>> gtffile = HTSeq.GFF_Reader("Homo_sapiens.GRCh37.56_chrom1.gtf")
>>> coverage = HTSeq.GenomicArray("auto", stranded=False, typecode="i")
>>> for almnt in bamfile:
... if almnt.aligned:
... coverage[almnt.iv] += 1

To find the location of all transcription start sites, we can look in the GTF file for exons with exon number 1 (as
indicated by the exon_number attribute in Ensembl GTF files) and ask for their directional start (start_d). The

21

HTSeq Documentation, Release 0.8.0

following loop extracts and prints this information (using itertools.islice to go through only the first 100
features in the GTF file):

>>> import itertools
>>> for feature in itertools.islice(gtffile, 100):
... if feature.type == "exon" and feature.attr["exon_number"] == "1":
... print(feature.attr["gene_id"], feature.attr["transcript_id"], feature.iv.
→˓start_d_as_pos)
ENSG00000223972 ENST00000456328 1:11873/+
ENSG00000223972 ENST00000450305 1:12009/+
ENSG00000227232 ENST00000423562 1:29369/-
ENSG00000227232 ENST00000438504 1:29369/-
ENSG00000227232 ENST00000488147 1:29569/-
ENSG00000227232 ENST00000430492 1:29342/-
ENSG00000243485 ENST00000473358 1:29553/+
ENSG00000243485 ENST00000469289 1:30266/+
ENSG00000221311 ENST00000408384 1:30365/+
ENSG00000237613 ENST00000417324 1:36080/-
ENSG00000237613 ENST00000461467 1:36072/-
ENSG00000233004 ENST00000421949 1:53048/+
ENSG00000240361 ENST00000492842 1:62947/+
ENSG00000177693 ENST00000326183 1:69054/+

As the GTF file contains several transcripts for each gene, one TSS may appear multiple times, giving undue weight
to it. Hence, we collect them in a set as this data type enforces uniqueness.

>>> tsspos = set()
>>> for feature in gtffile:
... if feature.type == "exon" and feature.attr["exon_number"] == "1":
... tsspos.add(feature.iv.start_d_as_pos)

Let’s take one of these starting positions. To get a nice one, we manually chose this one here, just for demonstration
purposes:

>>> p = HTSeq.GenomicPosition("1", 145439814, "+")

This is really one of the TSSs in the set:

>>> p in tsspos
True

We can get a window centered on this TSS by just subtracting and adding a fixed value (half of the desired window
size, let’s use 3 kb):

>>> halfwinwidth = 3000
>>> window = HTSeq.GenomicInterval(p.chrom, p.pos - halfwinwidth, p.pos +
→˓halfwinwidth, ".")
>>> window
<GenomicInterval object '1', [145436814,145442814), strand '.'>

We can check the coverage in this window by subsetting and transforming to a list:

>>> list(coverage[window])
[0, 0, 0, ..., 0, 0]

As we will work with numpy from now on, it may be better to get this as numpy array:

22 Chapter 4. A detailed use case: TSS plots

http://numpy.scipy.org/

HTSeq Documentation, Release 0.8.0

>>> import numpy
>>> wincvg = numpy.fromiter(coverage[window], dtype='i', count=2*halfwinwidth)
>>> wincvg
array([0, 0, 0, ..., 0, 0, 0], dtype=int32)

With matplotlib, we can see that this vector is, in effect, not all zero:

>>> from matplotlib import pyplot
>>> pyplot.plot(wincvg)
>>> pyplot.show()

To sum up the profile, we initialize a numpy vector of the size of our window with zeroes:

>>> profile = numpy.zeros(2*halfwinwidth, dtype='i')

Now, we can go through the TSS positions and add the coverage in their windows to get the profile:

>>> for p in tsspos:
... window = HTSeq.GenomicInterval(p.chrom, p.pos - halfwinwidth, p.pos +
→˓halfwinwidth, ".")
... wincvg = numpy.fromiter(coverage[window], dtype='i', count=2*halfwinwidth)
... if p.strand == "+":
... profile += wincvg
... else:
... profile += wincvg[::-1]

Note that we add the window coverage reversed (“[::-1]”) if the gene was on the minus strand.

Using matplotlib, we can plot this:

>>> pyplot.plot(numpy.arange(-halfwinwidth, halfwinwidth), profile)
>>> pyplot.show()

4.1. Using the full coverage 23

HTSeq Documentation, Release 0.8.0

We can see clearly that the reads concentrate around the TSS, with a prominent peak a bit downstream (if you use
matplotlib’s interactive zoom, you can easily see that the peak is at 153 bp) and a dip upstream, at -79 bp.

Going back to the beginning, there is one possible improvement: When calculating the coverage, we just added one
to all the base pairs that the read covered. However, the fragment extends beyond the read, to a length of about 200
bp (the fragment size for which Barski et al. selected). Maybe we get a better picture by calculating the coverage not
from the reads but from the fragments, i.e., the reads extended to fragment size. For this, we just one line, to extend
the read to 200 bp. Using this, we now put the whole script together:

import HTSeq
import numpy
from matplotlib import pyplot

bamfile = HTSeq.BAM_Reader("SRR001432_head.bam")
gtffile = HTSeq.GFF_Reader("Homo_sapiens.GRCh37.56_chrom1.gtf")
halfwinwidth = 3000
fragmentsize = 200

coverage = HTSeq.GenomicArray("auto", stranded=False, typecode="i")
for almnt in bamfile:

if almnt.aligned:
almnt.iv.length = fragmentsize
coverage[almnt.iv] += 1

tsspos = set()
for feature in gtffile:

24 Chapter 4. A detailed use case: TSS plots

HTSeq Documentation, Release 0.8.0

if feature.type == "exon" and feature.attr["exon_number"] == "1":
tsspos.add(feature.iv.start_d_as_pos)

profile = numpy.zeros(2*halfwinwidth, dtype='i')
for p in tsspos:

window = HTSeq.GenomicInterval(p.chrom, p.pos - halfwinwidth, p.pos +
→˓halfwinwidth, ".")

wincvg = numpy.fromiter(coverage[window], dtype='i', count=2*halfwinwidth)
if p.strand == "+":

profile += wincvg
else:

profile += wincvg[::-1]

The script produces a profile variable whhich we can plot by adding these lines to it:

pyplot.plot(numpy.arange(-halfwinwidth, halfwinwidth), profile)
pyplot.show()

The plot looks much smoother with the extended fragments.

The coverage vector can be held in memory, even for a very large genome, because large parts of it are zero and
even where there are reads, the values tend to stay constant for stretches of several bases. Hence, GenomicArray’s
step storage mode is useful. If, however, extremely large amounts of reads are processed, the coverage vector can
become “rough” and change value at every position. Then, the step storage mode becomes inefficient and we might

4.1. Using the full coverage 25

HTSeq Documentation, Release 0.8.0

be better off with an ordinary dense vector such as provided by numpy. As this numpy vector becomes very large, it
may not fit in memory, and the ‘memmap’ storage (using numpy’s memmap facility) then uses temporary files on disk.
We mention these possibilities as they may be useful when working with the full coverage vector is required. Here,
however, we can do otherwise.

Using indexed BAM files

We do not need the coverage everythere. We only need it close to the TSSs. We can sort our BAM file by posi-
tion (samtools sort) and index it (samtools index) and then use random access, as HTSeq exposes this
functionality of SAMtools.

Let’s say we use the same window as above as example:

>>> p = HTSeq.GenomicPosition("1", 145439814, "+")
>>> window = HTSeq.GenomicInterval(p.chrom, p.pos - halfwinwidth, p.pos +
→˓halfwinwidth, ".")
>>> window
<GenomicInterval object '1', [145436814,145442814), strand '.'>

Then, we can simply get a list of all reads within this interval as follows:

>>> sortedbamfile = HTSeq.BAM_Reader("SRR001432_head_sorted.bam")
>>> for almnt in sortedbamfile[window]:
... print(almnt)
<SAM_Alignment object: Read 'SRR001432.90270 USI-EAS21_0008_3445:8:3:245:279 length=25
→˓' aligned to 1:[145437532,145437557)/->
...

<SAM_Alignment object: Read 'SRR001432.205754 USI-EAS21_0008_3445:8:5:217:355
→˓length=25' aligned to 1:[145440975,145441000)/->

Let’s have a closer look at the last alignment. As before, we first extent the read to fragment size:

>>> fragmentsize = 200
>>> almnt.iv.length = fragmentsize
>>> almnt
<SAM_Alignment object: Read 'SRR001432.205754 USI-EAS21_0008_3445:8:5:217:355
→˓length=25' aligned to 1:[145440800,145441000)/->

The read has been aligned to the “-” strand, and hence, we should look at its distance to the end of the window (i.e.,
p.pos, the position of the TSS, plus half the window width) to see where it should be added to the profile vector:

>>> start_in_window = p.pos + halfwinwidth - almnt.iv.end
>>> end_in_window = p.pos + halfwinwidth - almnt.iv.start
>>> print(start_in_window, end_in_window)
1814 2014

To account for this read, we should add ones in the profile vector along the indicated interval.

Using this, we can go through the set of all TSS positions (in the tsspos set variable that we created above) and for
each TSS position, loop through all aligned reads close to it. Here is this double loop:

>>> profileB = numpy.zeros(2*halfwinwidth, dtype='i')
>>> for p in tsspos:
... window = HTSeq.GenomicInterval(p.chrom, p.pos - halfwinwidth, p.pos +
→˓halfwinwidth, ".")
... for almnt in sortedbamfile[window]:

26 Chapter 4. A detailed use case: TSS plots

HTSeq Documentation, Release 0.8.0

... almnt.iv.length = fragmentsize

... if p.strand == "+":

... start_in_window = almnt.iv.start - p.pos + halfwinwidth

... end_in_window = almnt.iv.end - p.pos + halfwinwidth

... else:

... start_in_window = p.pos + halfwinwidth - almnt.iv.end

... end_in_window = p.pos + halfwinwidth - almnt.iv.start

... profileB[start_in_window : end_in_window] += 1

This loop now runs a good deal faster than our first attempt, and has a much smaller memory footprint.

We can plot the profiles obtained from our two methods on top of each other:

>>> pyplot.plot(numpy.arange(-halfwinwidth, halfwinwidth), profile, ls="-", color=
→˓"blue")
>>> pyplot.plot(numpy.arange(-halfwinwidth, halfwinwidth), profileB, ls="--",
→˓color="red")
>>> pyplot.show()

We notice that they are equal, except for the boundaries. This artifact arose because we extend reads to fragment
length: A read which is just outside the window will not be found by our new loop even though if may reach into our
profile window after extension to fragment length. Therefore, we should make the window used to subset the BAM
file a bit wider than before to get even reads that are once the fragment length away. However, with this, we may
also get reads that get extended into the wrong direction, such that start_in_windows and end_in_windows
extend beyond the size of the fragment vector. Four extra lines need to be added to deal with these cases, and then, our

4.2. Using indexed BAM files 27

HTSeq Documentation, Release 0.8.0

new script gives the same result as the previous one.

Here is the complete code:

import HTSeq
import numpy
from matplotlib import pyplot

sortedbamfile = HTSeq.BAM_Reader("SRR001432_head_sorted.bam")
gtffile = HTSeq.GFF_Reader("Homo_sapiens.GRCh37.56_chrom1.gtf")
halfwinwidth = 3000
fragmentsize = 200

tsspos = set()
for feature in gtffile:

if feature.type == "exon" and feature.attr["exon_number"] == "1":
tsspos.add(feature.iv.start_d_as_pos)

profile = numpy.zeros(2*halfwinwidth, dtype='i')
for p in tsspos:

window = HTSeq.GenomicInterval(p.chrom,
p.pos - halfwinwidth - fragmentsize, p.pos + halfwinwidth + fragmentsize, ".")

for almnt in sortedbamfile[window]:
almnt.iv.length = fragmentsize
if p.strand == "+":

start_in_window = almnt.iv.start - p.pos + halfwinwidth
end_in_window = almnt.iv.end - p.pos + halfwinwidth

else:
start_in_window = p.pos + halfwinwidth - almnt.iv.end
end_in_window = p.pos + halfwinwidth - almnt.iv.start

start_in_window = max(start_in_window, 0)
end_in_window = min(end_in_window, 2*halfwinwidth)
if start_in_window >= 2*halfwinwidth or end_in_window < 0:

continue
profile[start_in_window : end_in_window] += 1

As before, to get a plot, add:

pyplot.plot(numpy.arange(-halfwinwidth, halfwinwidth), profile)
pyplot.show()

You will now get the same plot as we got with the first method.

Streaming through all reads

The previous solution requires sorting and indexing the BAM file. For large amounts of data, this may be a burden,
and hence, we show a third solution that does not require random access to reads. The idea is to go through all reads
in arbitrary order, check for each read whether it falls into one or more windows around TSSs, and, if so, adds ones
to the profile vector at the appriate places. In essence, it is the same tactic as before, but nesting the two for loops the
other way round.

In order to be able to check quickly whether a read overlaps with a window, we can use a GenomicArrayOfSets,
in which we mark off all windows. For easy access, we denote each winow with an GenomicPosition object
giving its midpoint, i.e., the actual TSS position, as follows:

28 Chapter 4. A detailed use case: TSS plots

HTSeq Documentation, Release 0.8.0

>>> tssarray = HTSeq.GenomicArrayOfSets("auto", stranded=False)
>>> for feature in gtffile:
... if feature.type == "exon" and feature.attr["exon_number"] == "1":
... p = feature.iv.start_d_as_pos
... window = HTSeq.GenomicInterval(p.chrom, p.pos - halfwinwidth, p.pos +
→˓halfwinwidth, ".")
... tssarray[window] += p

>>> len(list(tssarray.chrom_vectors["1"]["."].steps()))
30085

As before, p is the position of the TSS, and window is the interval around it.

To demonstrate how this data structure can be used, we take a specific read that we selected as a good example:

>>> for almnt in bamfile:
... if almnt.read.name.startswith("SRR001432.700 "):
... break
>>> almnt
<SAM_Alignment object: Read 'SRR001432.700 USI-EAS21_0008_3445:8:1:35:294 length=25'
→˓aligned to 1:[169677855,169677880)/->

Again, we extent the read to fragment size:

>>> almnt.iv.length = fragmentsize
>>> almnt
<SAM_Alignment object: Read 'SRR001432.700 USI-EAS21_0008_3445:8:1:35:294 length=25'
→˓aligned to 1:[169677680,169677880)/->

To see which windows the read covers, we subset the tssarray and ask for steps that the fragment in almnt covers:

>>> for step_iv, step_set in tssarray[almnt.iv].steps():
... print("Step", step_iv, ", contained by these windows:")
... out = set()
... for p in step_set:
... out.add(" Window around TSS at "+str(p))
... print('\n'.join(sorted(out)))
Step 1:[169677680,169677838)/. , contained by these windows:

Window around TSS at 1:169677780/-
Window around TSS at 1:169679672/-

Step 1:[169677838,169677880)/. , contained by these windows:
Window around TSS at 1:169677780/-
Window around TSS at 1:169679672/-
Window around TSS at 1:169680838/-

As is typical for GenomicArrayOfSets, some TSSs appear in more than one step. To make sure that we don’t count
them twice, we take the union of all the step sets (with the operator |=, which means in-place union when used for
Python sets):

>>> s = set()
>>> for step_iv, step_set in tssarray[almnt.iv].steps():
... s |= {x.__repr__() for x in step_set}
>>> sorted(s) #
["<GenomicPosition object '1':169677780, strand '-'>",
"<GenomicPosition object '1':169679672, strand '-'>",
"<GenomicPosition object '1':169680838, strand '-'>"]

For each of the values for p in s, we calculate values for start_in_window and stop_in_window, as before,

4.3. Streaming through all reads 29

HTSeq Documentation, Release 0.8.0

and then add ones in the profile vector at the appropriate places.

Putting all this together leads to this script:

import HTSeq
import numpy
from matplotlib import pyplot

bamfile = HTSeq.BAM_Reader("SRR001432_head.bam")
gtffile = HTSeq.GFF_Reader("Homo_sapiens.GRCh37.56_chrom1.gtf")
halfwinwidth = 3000
fragmentsize = 200

tsspos = HTSeq.GenomicArrayOfSets("auto", stranded=False)
for feature in gtffile:

if feature.type == "exon" and feature.attr["exon_number"] == "1":
p = feature.iv.start_d_as_pos
window = HTSeq.GenomicInterval(p.chrom, p.pos - halfwinwidth, p.pos +

→˓halfwinwidth, ".")
tsspos[window] += p

profile = numpy.zeros(2*halfwinwidth, dtype="i")
for almnt in bamfile:

if almnt.aligned:
almnt.iv.length = fragmentsize
s = set()
for step_iv, step_set in tsspos[almnt.iv].steps():

s |= step_set
for p in s:

if p.strand == "+":
start_in_window = almnt.iv.start - p.pos + halfwinwidth
end_in_window = almnt.iv.end - p.pos + halfwinwidth

else:
start_in_window = p.pos + halfwinwidth - almnt.iv.end
end_in_window = p.pos + halfwinwidth - almnt.iv.start

start_in_window = max(start_in_window, 0)
end_in_window = min(end_in_window, 2*halfwinwidth)
profile[start_in_window : end_in_window] += 1

Again, to get a plot (which will look the same as before), add:

pyplot.plot(numpy.arange(-halfwinwidth, halfwinwidth), profile)
pyplot.show()

30 Chapter 4. A detailed use case: TSS plots

CHAPTER 5

Counting reads

A very typical use case for the HTSeq library is to for a given list of genomic features (such as genes, exons, ChIP-Seq
peaks, or the like), how many sequencing reads overlap each of the features. As a more complex example for using
HTSeq, we supply the script htseq-count, which takes a GTF file with gene models and a SAM file and counts
for each gene how many reads map to it; see Section Counting reads in features with htseq-count.

The htseq-count script, however, has implementation details which were chosen with a specific use case in mind,
namely to quantify gene expression for subsequent testing for differential expression, which is why, for example, the
script does not count reads that map to multiple genes. For other applications, different resolutions of such ambiguities
might be desirable, and then, a bioinformatician may want to create her own counting script. In the following, we
expand on the coverage of this topic in the Tour (A tour through HTSeq) and give building blocks which should make
it possible to write such scripts also for bioinformaticians with only modest knowledge of Python.

Preparing the feature array

Our general approach is to define a GenomicArrayOfSets and fill it with all the features we would like to get
counts for.

Similar to the code shown in the Tour, we prepare such an object from the GTF file for yeast as follows:

import HTSeq

gtf_file = HTSeq.GFF_Reader("Saccharomyces_cerevisiae.SGD1.01.56.gtf.gz")
exons = HTSeq.GenomicArrayOfSets("auto", stranded=True)

for feature in gtf_file:
if feature.type == "exon":

exons[feature.iv] += feature.attr["gene_id"]

A few things might be noteworthy here: For each exon, we just store the gene ID in the genomic array. Hence, all
exons from the same gene are represented with the same string. This is deliberate, as we want to count on the level of
genes, not exons, but could be done differently: storing the whole feature object in the GenomicArrayOfSets uses
up noticeably more memory but allows to access more information in downstream processing.

31

HTSeq Documentation, Release 0.8.0

Also note that in a GTF file, an exon that appears in several transcripts appear once for each transcripts. Because all
these exons are represented by the same name, they will be collapsed to a single value in the GenomicArrayOfSets.

GTF files are not the only source of feature annotations. One could, as well, read a BED file or other text file with
genomic coordinates of, say, ChIP-Seq peaks, putative enhancers, or any other kind of data. For example, if we have a
tab-separated text file with feature coordinates in four columns – feature ID, chromosome, start, end – we might use:

features = HTSeq.GenomicArrayOfSets("auto", stranded=False)
for line in open("myfeatures.txt"):

fields = line.split("\t")
iv = HTSeq.GenomicInterval(fields[1], int(fields[2]), int(fields[3]))
features[iv] += fields[0]

Here, we have assumed that the coordinates follow Python conventions: The first base of a chromosome is numbered
0, not 1, and the end position is not included in the interval. Remember to subtract or add 1 as necessary if this is not
the case with your input data.

Counting ungapped single-end reads

We start with the easiest case, that of ungapped single-end reads. We first recapitulate points already shown in the
Tour and then add further refinements in the following.

If we have a SAM file with unmapped reads, we might use the following code:

import collections
counts = collections.Counter()

almnt_file = HTSeq.SAM_Reader("my_alignments.sam")
for almnt in almnt_file:

if not almnt.aligned:
count["_unmapped"] += 1
continue

gene_ids = set()
for iv, val in features[almnt.iv].steps():

gene_ids |= val
if len(gene_ids) == 1:

gene_id = list(gene_ids)[0]
counts[gene_id] += 1

elif len(gene_ids) == 0:
counts["_no_feature"] += 1

else:
counts["_ambiguous"] += 1

for gene_id in counts:
print gene_id, counts[gene_id]

For the benefit of readers with only limited Python knowledge, we go through this code chunk step by step:

The variable counts contains a dictionary, which will associate gene IDs with read counts. We use a variant of
Python’s usual dict type, namely the Counter class from the collections module in the standard library
(from Python 2.7 onwards), which initialized any new key with the value zero. (Users of Python 2.6 can use
collections.defaultdict(int) instead.)

We then instantiate a SAM_Reader` object (If you have a BAM file, use BAM_Reader instead) and run through all
its record in a for loop. As described in the Tour, each record in the SAM file is vprovided to the loop body in the
variable almnt.

32 Chapter 5. Counting reads

HTSeq Documentation, Release 0.8.0

We first check whether the read might be unaligned, and if so, increment a special counter that we call _unmapped
(with an underscore as prefix to distinguish it from gene IDs).

For the aligned reads, the alignment’s genomic interval, almnt.iv, shows us the interval covered by the read. Using
this as an index to feature gives us a view on this stretch of the feature container, in which we had stored the
exons. The iterator features[almnt.iv].steps() returns pairs of the form (iv, val), where iv is a
genomic interval and val is the set of gene IDs associated with the exons overlapping this step. Using the |= operator,
we get the union of the sets of all the steps in the initially empty set gene_ids, which, at the end, contains the gene
IDs of all genes that the read overlaps. Remember that a set can contain each element at most once. Hence, even if
we see the same gene in several steps (for example because the read overlaps with several exons), we still get it only
once in gene_ids.

We then treat three possible cases, namely that the set gene_ids contains exactly one element, that it is empty, or
that it contains mroe than one element. The first case is the desired one: The read overlaps with precisely one gene,
and we hence increase the count for this gene by one. Note that we need the idiom list(gene_ids)[0] to extract
the name of this single gene from the set. If the read did not overlap with a gene (len(gene_ids) == 0), we
increase a special counter that we call _no_feature.

What should we do if the read overlaps more than one gene? Here, one might now come up with sophisticated logic
to decide which gene to count the read for. To keep things simple, however, we simply count the read for none of the
overlapped genes and instead increase the special counter _ambiguous .

In the final two lines, we loop through the counter to print out the counts.

Counting gapped single-end reads

CIGAR Operations

The above code can be used as is e.g. for ChIP-Seq data, but for RNA-Seq data, we need an additional ingredient:
When sequencing RNA, many reads will pass over an exon-exon junction and hence align to two (or more) disjunct
intervals on the genome, tyically with an intron in between. If the reads have been aligned with a splice-aware
alignment tool, such gapped alignment is indicated in the SAM file by the CIGAR string.

HTSeq parses the CIGAR string and presents it in the cigar slot of a class:SAM_Alignment object as a list of
class:CigarOperation objects. As an example, consider a SAM alignment record describing a read that has been
aligned to position 1000 on the ‘+” strand of chromosome chr1, with CIGAR string 20M300N30M2I8M. Following
the SAM specification (please read it first if you are unfamiliar with CIGAR strings), this means an alignment as
depicted here:

[[TO DO: Nicer image, add “chr1:”]]

The SAM_Alignment object will hence have in its cigar slot a list of 5 objects, each giving the information of
one row of the table. Note how some operations are associated with zero-length intervals on either the reference (i.e.,
chromosome) or the query (i.e., read). For example, the intron (N200) spans 200 bp on the chromosome (1020-1320)
but a zero-length interval on the read (20-20). In this manner, the CigarOperation class conveniently shows which
intervals are affected by which operation.

Counting with gapped reads

In the code above, we used this for loop

5.3. Counting gapped single-end reads 33

HTSeq Documentation, Release 0.8.0

gene_ids = set()
for iv, val in features[almnt.iv].steps():

gene_ids |= val

to collect the gene IDs of all exons overlapped by the reads interval. For loop runs over the whole interval covered
by the aligned read, i.e., in the figure above, it would run from position 1000 to position 1378 on chromosome 1,
including the alignment gap from 1020 to 1320. By looking at each cigar operation separately we can correctly skip
the gaps. We only need to replace the for loop with the following double loop

gene_ids = set()
for cigop in almnt.cigar:

if cigop.type != "M":
continue

for iv, val in features[cigop.ref_iv].steps():
gene_ids |= val

The outer loop goes through the CIGAR operation, skipping all but the match operations, and the inner loop inspects
the steps covered by the match operations and collects the gene_ids in the gene_ids set variable. The rest of the
code stays as above.

Of course, custom logic can be implemented her to infer useful information from other cigar operation types, but for
the simple counting task at hand here, we do not need this.

Dealing with multiple alignments

If the aligner finds multiple alignments for a read, these are typically reported in multiple SAM records. If the SAM
file unsorted or sorted by alignment position, it is hard to look at all the possible alignments of a given read together,
because the records with the alignments for a given read are spread throughout the file. If the purpose of the counting
is subsequent testing for differential expression, it is often safest, anyway, to skip all multiply aligned reads (because
a read that is counted for several genes may cause spurious calls of differential expression), and then, we merely need
to recognize that a read has multiple alignments. In the htseq-count script (see ref:count), this is done by two means:
First, many (but not all aligners) use the optional field “NH”, which indicates the number of reported alignments.
Testing for almnt.optional_field("NH") > 1 allows to find these read. Also, if there are multiple good
alignments, without one of them being considered by the aligner to be more likely than the others, then the alignment
quality (also denoted mapping quality, MAPQ, in the SAM specification) should be 3 or less. Hence, if one skips all
reads with an alignment quality below, say, 10 (almnt.aQual < 10), one will skip over all multiply aligned reads
(provided the aligner indicates the mapping quality correctly, which is not always the case).

For more advanced use cases, it may be desirable to inspect all reported alignment, for example, to the chose one using
some custom logic, or to aggregate information over all of them. If the SAM or BAM file has been sorted by read
name then alternative alignments for the same read will be in adjacent lines or records. To facilitate handling this case,
HTSeq offers the function function:bundle_multiple_alignments. It takes an iterator over SAM_Alignment objects
(e.g., a SAM_Reader or BAM_Reader object) and returns an iterator over lists of SAM_Alignment objects. Each
list contains only records describing alignments for the same read. For this to work, the SAM file has to be sorted by
read name to ensure that mutiple alignments for the same read appear in adjacent records.

Handling paired-end reads

In the case of paired-end alignments, we will typically want to count read pairs, not reads. After all, the fragment (and
not the reads from either of its ends) are the actual evidence for a gene’s expression that we want to count. Therefore,
we want to process the alignment information for the two mated ends together.

First a quick review of how alignments for paired-end data are presented in a SAM file: The two “mated” reads re-
ferring to the two end of a DNA fragment are reported in two separate records. The fact that the records describe

34 Chapter 5. Counting reads

HTSeq Documentation, Release 0.8.0

the same fragment can be seen from the fact that they have the same read name (given by the read.name slot).
That they refer to opposite ends can be seen from the respective bits in the FLAG field, which are exposed by the
SAM_Alignment.pe_which slot of the SAM_Alignment class, which takes the values first or second (or
unknown if not specified in the flag field, or not_paired_end if an alignment of a single-end read is represented)
. If the read pair has multiple alignments, each alignment is reported by a pair of SAM records. As correspond-
ing records are not necessarily in adjacent lines, they are “linked” by the mate position fields (called RNEXT and
PNEXT in the SAM specification), which are exposed by the slot SAM_Alignment.mate_pos, which contains
a GenomicPosition object. The two records describing the two halves of a given alignment can be recognized
as being correspondent from the fact that each record’s mate_pos attribute is equal to the starting position (given
by‘‘iv.start_as_pos‘‘).

Note that all the SAM records for a given read pair may be spread throughout the file. Only if the file is sorted by
read name can we expect them to be at adjacent places, and even then, the records for multiple alignments can be
intermixed.

To facilitate handling paired-end alignments, HTSeq offers the function pair_SAM_alignments(). This function
expects an iterator over SAM records (typically, a SAM_Reader or BAM_Reader object) and returns an iterator over
pairs (i.e., tuples of length 2) of SAM_Alignment records, with the first element being the alignment of the read
from the first sequencing pass (i.e., from the 5’ end of the DNA fragment) and the second element the corresponding
alignment from the second pass (i.e., the 3’ read). The function expects the SAM file to be sorted by read name. It
proceeds by reading in consecutive records with the same read name and storing them in a list. Once it finds a record
with a differing read name, the function goes through the list, sorts its content into pairs of corresponding alignment
records and yields these pairs. If the function’s option bundle``[TODO: add description of "bundle"
in alignment.rst, too] is set to ``True, the function does not yield the pairs separately but instead
yields a list of all alignment pairs for the same read.

Using these features, we can modify our counting loop as follows for paired-end data:

almnt_file = HTSeq.SAM_Reader("my_paired_alignments.sam")
counts = collections.Counter()
for bundle in HTSeq.pair_SAM_alignments(almnt_file, bundle=True):

if len(bundle) != 1
continue # Skip multiple alignments

first_almnt, second_almnt = bundle[0] # extract pair
if not first_almnt.aligned and second_almnt.aligned:

count["_unmapped"] += 1
continue

gene_ids = set()
for iv, val in features[left_almnt.iv].steps():

gene_ids |= val
for iv, val in features[right_almnt.iv].steps():

gene_ids |= val
if len(gene_ids) == 1:

gene_id = list(gene_ids)[0]
counts[gene_id] += 1

elif len(gene_ids) == 0:
counts["_no_feature"] += 1

else:
counts["_ambiguous"] += 1

for gene_id in counts:
print gene_id, counts[gene_id]

Note that here, we skip reads if only one of two mates are aligned. Of course, one could choose as well to count such
a pair for the gene to which the aligned mate has been mapped.

The need to sort paired-end SAM files by read name can be an inconvenience, because many aligners output the SAM
file sorted by position. In many use case, we can expect that the two ends of the same read will align to positions

5.3. Counting gapped single-end reads 35

HTSeq Documentation, Release 0.8.0

close to each other on the genome. Then, an alternative strategy to pair up alignment records is go through the
SAM file, which has been sorted by position, and keep a dictionary of alignment records whose partner record has
not been found yet. For each record, we check the dictionary for its partner (i.e., for a record with the same read
name and matching position information). If we find the partner, we remove it from the dictionary and yield both
together as a pair. If the partner is not in the dictionary, the record is stored in the dictionary to wait for its partner
to come along. As long as mated records are not too far from each other in the file, the dictionary will only contain
a manageable number of records. Only if reads are often very far from each other (e.g., because the file was not
sorted by position), the dictionary might become too large to fit into memory. HTSeq offers this manner of pairing
up alignment records in the function pair_SAM_alignment_with_buffer(), which can be used in the same
manner as pair_SAM_alignment(), but takes one optional additional argument, the maximum size of the buffer
(by default, 3 million).

36 Chapter 5. Counting reads

CHAPTER 6

Reference overview

This page offers a brief overview over all classes and functions offered by HTSeq.

Parser and record classes

For all supported file formats, parser classes (called Reader) are provided. These classes all instatiated by giving a
file name or an open file or stream and the function as iterator generators, i.e., the parser objects can be used, e.g., in
a for loop to yield a sequence of objects, each desribing one record. The table gives the parse class and the record
class yielded. For details, see the linked documentation

For most formats, functionality for writing files of the format is provided. See the detailed documentation as these
methods and classes have varying semantics.

37

HTSeq Documentation, Release 0.8.0

File format typical
content

Parser class
for reading

Record class
yielded by parser

Method/class method for
writing

FASTA DNA
sequences

FastaReader Sequence Sequence.
write_to_fasta_file()

FASTQ sequenced
reads

FastqReader SequenceWithQualitiesSequenceWithQuality.
write_to_fastq_file()

GFF (incl.
GFF3 and GTF)

genomic
annotation

GFF_Reader GenomicFeature GenomicFeature.
get_gff_line()

BED score data or
annotation

BED_Reader GenomicFeature

Wiggle (incl.
BedGraph)

score data on
a genome

WiggleReaderpair:
(GenomicInterval,
float)

GenomicArray.
write_bedgraph_file()

SAM aligned reads SAM_Reader SAM_Alignment SAM_Alignment.
get_sam_line()

BAM aligned reads BAM_Reader SAM_Alignment BAM_Writer
VCF variant calls VCF_Reader VariantCall
Bowtie (legacy
format)

aligned reads BowtieReaderBowtieAlignment

SolexaExport
(legacy format)

aligned reads SolexaExportReaderSolexaExportAlignment

Most parser classes are sub-classes of class FileOrSequence, which users will, however, rarely use directly.

Specifying genomic positions and intervals

The class GenomicInterval specifies an interval on a chromosome (or contig or the like). It is defined by spec-
ifying the chromosome (or contig) name, the start and the end and the strand. Convenience methods are offered for
different ways of accessing this information, and for tetsing for overlap between intervals. A GenomicPosition,
technically a GenomicInterval of length 1, refers to a single nucleotide or base-pair position.

Objects of these classes are used internally wherever intervals or positions are represented, especially in record classes
and as index keys to genomic array.

See page Genomic intervals and genomic arrays for details.

Genomic arrays

The classes GenomicArray and GenomicArrayOfSets are container classes to store data associated with ge-
nomic positions or intervals.

See page Genomic intervals and genomic arrays for details.

Special features for SAM/BAM files

The class CigarOperation offers a convenient way to handle the information encoded in the CIGAR field of SAM
files.

The functions pair_SAM_alignments() and pair_SAM_alignments_with_buffer() help to pair
up the records in a SAM file that describe a pair of alignments for mated reads from the same DNA fragment.

38 Chapter 6. Reference overview

HTSeq Documentation, Release 0.8.0

Similarly, the function bundle_multiple_alignments() bundles multiple alignment record pertaining to the
same read or read pair.

See page Read alignments for details.

6.4. Special features for SAM/BAM files 39

HTSeq Documentation, Release 0.8.0

40 Chapter 6. Reference overview

CHAPTER 7

Sequences and FASTA/FASTQ files

Sequence

A Sequence object holds a DNA sequence. Besides the actual sequence, an object may also hold a name.

Instantiation

class HTSeq.Sequence(seq, name=”unnamed”)

Pass the DNA sequence and, optionally, a name or ID to the constructor:

>>> myseq = HTSeq.Sequence(b"ACCGTTAC", "my_sequence")

(If the name is omitted, the default "unnamed" is used.)

Attributes

Sequence.seq
Sequence.name
Sequence.descr

The information can be accessed via the attributes seq and name, which are strings:

>>> myseq.seq
b'ACCGTTAC'
>>> myseq.name
'my_sequence'

There is a third attribute, called descr, which is by default None but may contain a “description”. See class
FastaReader for more information.

Representation and string conversion

The __repr__ method gives name and length:

>>> myseq
<Sequence object 'my_sequence' (length 8)>

41

HTSeq Documentation, Release 0.8.0

The __str__ method returns just the sequence:

>>> print(myseq)
ACCGTTAC

Note that the length of a sequence is the number of bases:

>>> len(myseq)
8

Subsetting Subsetting works as with strings:

>>> myseq2 = myseq[3:5]
>>> myseq2.name
'my_sequence[part]'
>>> myseq2.seq
b'GT'

(Note that "[part]" is appended to the name of the subsetted copy.)

Reverse complement

Sequence.get_reverse_complement()

>>> print(myseq.get_reverse_complement())
GTAACGGT
>>> rc = myseq.get_reverse_complement()
>>> rc.name
'revcomp_of_my_sequence'
>>> rc.seq
b'GTAACGGT'

Writing to FASTA file

To write Sequence objects into a FASTA file, open a text file for writing, then call write_to_fasta_file for
each sequence, providing the open file handle as only argument, and close the file:

>>> my_fasta_file = open("test.fa", "w")
>>> myseq.write_to_fasta_file(my_fasta_file)
>>> my_fasta_file.close()

To read from a FASTA file, see class FastaReader.

Extended UIPAC letters These are not (yet) supported. A sequence should only contain A, C, G, T and N.

Counting bases

For read quality assessment, it is often helpful to count the proportions of called bases, stratified by
position in the read. To obtain such counts, the following idiom is helpful:

>>> import numpy
>>> reads = HTSeq.FastqReader("yeast_RNASeq_excerpt_sequence.txt")
>>> counts = numpy.zeros((36, 5), numpy.int)
>>> for read in reads:
... read.add_bases_to_count_array(counts)
>>> counts
array([[16194, 2048, 4017, 2683, 57],

[10716, 3321, 4933, 6029, 0],
[7816, 5024, 5946, 6213, 0],
...

42 Chapter 7. Sequences and FASTA/FASTQ files

HTSeq Documentation, Release 0.8.0

[8526, 4812, 5460, 6197, 4],
[8088, 4915, 5531, 6464, 1]])

Here, a two-dimensional numpy array of integer zeroes is defined and then passed to the
add_bases_to_count_array method of each Sequence object obtained from the Fastq file. The method
add_bases_to_count_array adds, for each base, a one to one of the array elements such that, in the end,
the 36 rows of the array correspond to the positions in the reads (all of length 36 bp in this example),
and the 5 columns correspond to the base letters ‘A’, ‘C’, ‘G’, ‘T’, and ‘N’, as given by the constant
base_to_columns

base_to_column = { 'A': 0, 'C': 1, 'G': 2, 'T': 3, 'N': 4 }

Hence, we can get the proportion of ‘C’s in each position as follows:

>>> counts = numpy.array(counts, numpy.float)
>>> #counts[: , HTSeq.base_to_column['C']] / counts.sum(1)
array([0.08192328, 0.13284531, 0.20096804, 0.16872675, 0.21200848,

...
0.18560742, 0.19236769, 0.19088764, 0.17872715, 0.1924877 ,
0.19660786])

(Here, we first convert the count array to type float to allow to proper division, and then divide the
second column (HTSeq.base_to_column['C']) by the row-wise sums (counts.sum(1); the 1
requests summing along rows).)

Trimming reads

Sequence.trim_left_end(pattern, mismatch_prop = 0.)
Sequence.trim_right_end(pattern, mismatch_prop = 0.)

In high-throughput sequencing, reads are sometimes contaminated with adapters or sequencing primers.
These function take a pattern and attempt to match either the right end of the pattern to the left end
of the sequence (trim_left_end) or the left end of the pattern to the right end of the sequence
(trim_right_end). The match is the trimmed off.

Here is an example:

>>> seq2 = HTSeq.Sequence(b"ACGTAAAGCGGTACGGGGGG")
>>> left_seq = HTSeq.Sequence(b"CCCACG")
>>> print(seq2.trim_left_end(left_seq))
TAAAGCGGTACGGGGGG

The right end of the pattern (“ACG”) matched the left end of the sequence, and has hence been trimmed
off.

The optional argument mismatch_prop is the number of allowed mismatches as proportion of the
length of the match:

>>> right_seq = HTSeq.Sequence(b"GGGTGGG")
>>> print(seq2.trim_right_end(right_seq))
ACGTAAAGCGGTACGGG
>>> print(seq2.trim_right_end(right_seq, 1/6.))
ACGTAAAGCGGTAC
>>> print(seq2.trim_right_end(right_seq, 1/7.))
ACGTAAAGCGGTACGGG

Here, if we allow at least one mismatch per six bases, the whole pattern gets cut off.

If you have quality information, you can use this, too, to specify the allowed amount of
mismatch. See SequenceWithQualities.trim_left_end_with_quals() and

7.1. Sequence 43

HTSeq Documentation, Release 0.8.0

SequenceWithQualities.trim_left_end_with_quals().

SequenceWithQualities

The sequences obtained from high-throughput sequencing devices (in the following also referred to as “reads”) typi-
cally come with base-call quality scores, which indicate how sure the software was that the right base was called. The
class SequenceWithQualities represents such reads.

SequenceWithQualities is a daughter class of Sequence and inherits all its features.

Instantiation

class HTSeq.SequenceWithQualities(seq, name qualstr, qualscale=”phred”)

A SequenceWithQualities can be instantiated as a Sequence, but now with a third argument, the
quality string:

>>> myread = HTSeq.SequenceWithQualities(b"ACGACTGACC", "my_read", b"IICGAB#
→˓#(!")

The quality string is interpreted as Sanger-encoded string of Phred values, as defined in the FASTQ format
specification, i.e., each letter in the quality string corresponds to one base in the sequence and if the value
33 is subtracted from the quality characters ASCII value, the Phred score is obtained.

The Phred scores can then be found in the slot qual:

>>> myread.qualstr
b'IICGAB##(!'
>>> myread.qual
array([40, 40, 34, 38, 32, 33, 2, 2, 7, 0], dtype=uint8)

If the quality string follows the Solexa FASTQ specification, the value to be subtracted is not 33 but 64. If
you pass a quality string in this format, set qualscale="solexa".

Prior to version 1.3, the SolexaPipeline software used a yet another style of encoding quality string. If
you want to use this one, specify qualscale="solexa-old"

Attributes

As for Sequence objects, there are attributes name, seq, and descr.

Furthermore, we now have the attributes qual and qualstr, already mentioned above.

SequenceWithQuality.qual
qual is a numpy array of data type integer, with as many elements as there are bases. Each element
is a Phred score. A Phred score S is defined to mean that the base caller estimates the probability p
of the base call being wrong as p = -log10 (S/10).

Note that qual is always the probability, even if the solexa-old quality string format has been
used, which encodes the odds p (1 - p), i.e., in that case, the odds are converted to probabilities.

SequenceWithQuality.qualstr
The quality string according to Sanger Phred encoding. In case the quality was originally given in
solexa or solexa-old format, it is converted:

>>> read2 = HTSeq.SequenceWithQualities(b"ACGACTGACC", "my_read", b
→˓"hhgddaZVFF", "solexa")
>>> read2.qual
array([40, 40, 39, 36, 36, 33, 26, 22, 6, 6], dtype=uint8)

44 Chapter 7. Sequences and FASTA/FASTQ files

http://maq.sourceforge.net/fastq.shtml
http://maq.sourceforge.net/fastq.shtml

HTSeq Documentation, Release 0.8.0

>>> read2.qualstr
b"IIHEEB;7''"

Writing to FASTQ file

SequenceWithQuality.write_to_fastq_file(fasta_file)

To write SequenceWithQualities objects into a FASTQ file, open a text file for writing, then call
write_to_fastq_file for each sequence, providing the open file handle as only argument, and
close the file:

>>> my_fastq_file = open("test.fq", "w")
>>> myread.write_to_fastq_file(my_fastq_file)
>>> my_fastq_file.close()

Note that the reads will always be written with quality strings in Sanger encoding.

To read from a FASTQ file, see class FastqReader.

Counting quality values

Similar to Sequence.add_bases_to_count_array(), this method counts the occuring quality
values stratified by position. This then allows to calculate average qualities as well as histograms.

Here is a usage example:

>>> import numpy
>>> reads = HTSeq.FastqReader("yeast_RNASeq_excerpt_sequence.txt", "solexa"
→˓)
>>> counts = numpy.zeros((36, 41), numpy.int)
>>> for read in reads:
... read.add_qual_to_count_array(counts)
>>> #counts
array([[0, 0, 64, ..., 0, 0, 0],

[0, 0, 93, ..., 0, 0, 0],
...,
[0, 0, 2445, ..., 0, 0, 0],
[0, 0, 2920, ..., 0, 0, 0]])

The value counts[i,j] is then the number of reads for which the base at position i hat the quality
scores j. According to the Fastq standard, quality scores range from 0 to 40; hence, the array is initialized
to have 41 columns.

Trimming reads

SequenceWithQualities.trim_left_end_with_quals(pattern, max_mm_qual = 5)
SequenceWithQualities.trim_right_end_with_quals(pattern, max_mm_qual =

5)
These methods work as Sequence.trim_left_end() and Sequence.trim_right_end()
(which are, of course, avilable for SequenceWithQualities objects, too). The difference is, that
for the _with_quals trimming methods, the maximum amount of allowed mismatch is specified as the
maximum value that the sum of the quality scores of the mismatched bases may take.

TODO: Add example

FastaReader

The FastaReader class allows to read and parse a FASTA file. It can generates an iterator of Sequence objects.

7.3. FastaReader 45

HTSeq Documentation, Release 0.8.0

class HTSeq.FastaReader(filename_or_sequence)
As daughter class of FileOrSequence, FastaReader can be instantiated with either a filename, or with a
sequence. See FileOrSequence for details.

Example 1 The typical use for FastaReader is to go through a FASTA file and do something with each sequence, e.g.:

>>> for s in HTSeq.FastaReader("fastaEx.fa"):
... print("Sequence '%s' has length %d." % (s.name, len(s)))
Sequence 'sequence1' has length 72.
Sequence 'sequence2' has length 70.

Example 2 Often, one might to read a whole Fasta file into memory to access it as a dict. This is a good idiom for
this purpose:

>>> sequences = dict((s.name, s) for s in HTSeq.FastaReader("fastaEx.fa"))
>>> sequences["sequence1"].seq
b'AGTACGTAGTCGCTGCTGCTACGGGCGCTAGCTAGTACGTCACGACGTAGATGCTAGCTGACTAAACGATGC'

FastqReader

The FastqReader class works similar to FastaReader. It reads a Fastq file and generates an iterator over
SequenceWithQualities objects.

class HTSeq.FastqReader(filename_or_sequence, qual_scale=”phred”)
As daughter class of FileOrSequence, FastaReader can be instantiated with either a filename, or with a
sequence. See FileOrSequence for details.

By default, the quality strings are assumed to be encoded according to the Sanger/Phred standard. You may
alternatively specify "solexa" or "solexa-old" (see SequenceWithQuality).

46 Chapter 7. Sequences and FASTA/FASTQ files

CHAPTER 8

Genomic intervals and genomic arrays

GenomicInterval

A genomic interval is a consecutive stretch on a genomic sequence such as a chromosome. It is represented by a
GenomicInterval object.

Instantiation

class HTSeq.GenomicInterval(chrom, start, end, strand)

chrom (string) The name of a sequence (i.e., chromosome, contig, or the like).

start (int) The start of the interval. Even on the reverse strand, this is always the smaller of the two
values ‘start’ and ‘end’. Note that all positions should be given and interpreted as 0-based value!

end (int) The end of the interval. Following Python convention for ranges, this in one more than the
coordinate of the last base that is considered part of the sequence.

strand (string) The strand, as a single character, '+', '-', or '.'. '.' indicates that the strand is
irrelevant.

Representation and string conversion The class’s __str__ method gives a spcae-saving description of the inter-
val, the __repr__ method is a bit more verbose:

>>> iv = HTSeq.GenomicInterval("chr3", 123203, 127245, "+")
>>> print(iv)
chr3:[123203,127245)/+
>>> iv
<GenomicInterval object 'chr3', [123203,127245), strand '+'>

Attributes

GenomicInterval.chrom
GenomicInterval.start
GenomicInterval.end
GenomicInterval.strand

as above

47

HTSeq Documentation, Release 0.8.0

GenomicInterval.start_d
The “directional start” position. This is the position of the first base of the interval, taking the strand
into account. Hence, this is the same as start except when strand == '-', in which case it is
end-1.

Note that if you set start_d, both start and end are changed, such that the interval gets the
requested new directional start and its length stays unchanged.

GenomicInterval.end_d
The “directional end”: The same as end, unless strand=='-', in which case it is start-1.
This convention allows to go from start_d to end_d (not including, as usual in Python, the last
value) and get all bases in “reading” direction.

end_d is not writable.

GenomicInterval.length
The length is calculated as end - start. If you set the length, start_d will be preserved, i.e., end
is changed, unless the strand is -, in which case start is changed.

GenomicInterval.start_as_pos
GenomicInterval.end_as_pos
GenomicInterval.start_d_as_pos
GenomicInterval.end_d_as_pos

These attributes return GenomicPosition objects referring to the respective positions.

Directional instantiation

HTSeq.GenomicInterval_from_directional(chrom, start_d, length, strand=”.”)
This function allows to create a new GenomicInterval object specifying directional start and length
instead of start and end.

Methods

GenomicInterval.is_contained_in(iv)
GenomicInterval.contains(iv)
GenomicInterval.overlaps(iv)

These methods test whether the object is contained in, contains, or overlaps the second
GenomicInterval object iv.

For any of of these conditions to be true, the start and end values have to be appropriate, and further-
more, the chrom values have to be equal and the strand values consistent. The latter means that the
strands have to be the same if both intervals have strand information. However, if at least one of the objects
has strand == '.', the strand information of the other object is disregarded.

Note that all three methods return True for identical intervals.

GenomicInterval.xrange(step = 1)
GenomicInterval.xrange_d(step = 1)

These methods yield iterators of :class:GenomicPosition objects from start to end (or, for xrange_d
from start_d to end_d).

GenomicInterval.extend_to_include(iv)
Change the object’s start end end values such that iv becomes contained.

Special methods

GenomicInterval implements the methods necessary for

• obtaining a copy of the object (the copy method)

• pickling the object

• representing the object and converting it to a string (see above)

48 Chapter 8. Genomic intervals and genomic arrays

HTSeq Documentation, Release 0.8.0

• comparing two GenomicIntervals for equality and inequality

• hashing the object

GenomicPosition

A GenomicPosition represents the position of a single base or base pair, i.e., it is an interval of length 1, and
hence, the class is a subclass of :class:GenomicInterval.

class HTSeq.GenomicPosition(chrom, pos, strand=’.’)
The initialisation is as for a :class:GenomicInterval object, but no length argument is passed.

Attributes

HTSeq.pos
pos is an alias for GenomicInterval.start_d.

All other attributes of GenomicInterval are still exposed. Refrain from using them, unless you want
to use the object as an interval, not as a position. Some of them are now read-only to prevent the length to
be changed.

GenomicArray

A GenomicArray is a collection of ChromVector objects, either one or two for each chromosome of a genome.
It allows to access the data in these transparently via GenomicInterval objects.

Note: ‘‘GenomicArray‘‘’s interface changed significantly in version 0.5.0. Please see the Version History page.

Instantiation

class HTSeq.GenomicArray(chroms, stranded=True, typecode=’d’, storage=’step’,
memmap_dir=’‘)

Creates a GenomicArray.

If chroms is a list of chromosome names, two (or one, see below) ChromVector objects for each chro-
mosome are created, with start index 0 and indefinite length. If chroms is a dict, the keys are used for
the chromosome names and the values should be the lengths of the chromosome, i.e., the ChromVectors index
ranges are then from 0 to these lengths. (Note that the term chromosome is used only for convenience. Of
course, you can as well specify contig IDs or the like.) Finally, if chroms is the string "auto", the Genomi-
cArray is created without any chromosomes but whenever the user attempts to assign a value to a yet unknown
chromosome, a new one is automatically created with GenomicArray.add_chrom().

If stranded is True, two StepVector objects are created for each chromosome, one for the ‘+’ and
one for the ‘-‘ strand. For stranded == False, only one StepVector per chromosome is used. In
that case, the strand argument of all GenomicInterval objects that are used later to specify regions in the
GenomicArray are ignored.

The typecode determines the data type and is as in numpy, i.e.:

• 'd' for float values (C type ‘double’),

• 'i' for int values,

• 'b' for Boolean values,

• 'O' for arbitrary Python objects as value.

The storage mode determines how the ChromVectors store the data internally:

8.2. GenomicPosition 49

HTSeq Documentation, Release 0.8.0

• mode 'step': A step vector is used. This is the default and useful for large amounts of data which may
stay constant along a range of indices. Each such step is stored internally as a node in a red-black tree.

• mode 'ndarray': A 1D numpy array is used internally. This is useful if the data changes a lot, and
steps are hence inefficient. Using this mode requires that chromosome lengths are specified.

• mode memmap: This is useful for large amounts of data with very short steps, where step is inefficient,
but a numpy vectors would not fit into memory. A numpy memmap is used that stores the whole vector in
a file on disk and transparently maps into memory windows of the data. This mode requires chromosome
lengths, and specification of a directory, via the memmap_dir argument, to store the temporary files in.
It is not suitable for type code O.

Attributes

GenomicArray.stranded
GenomicArray.typecode

see above

GenomicArray.chrom_vectors
a dict of dicts of ChromVector objects, using the chromosome names, and the strand as keys:

.. doctest::

>>> ga = HTSeq.GenomicArray(["chr1", "chr2"], stranded=False)
>>> sorted(ga.chrom_vectors.items())
[('chr1', {'.': <ChromVector object, chr1:[0,Inf)/., step>}),
('chr2', {'.': <ChromVector object, chr2:[0,Inf)/., step>})]

>>> ga = HTSeq.GenomicArray(["chr1", "chr2"], stranded=True)
>>> sorted([(st[0], sorted(st[1].items())) for st in ga.chrom_vectors.
→˓items()])
[('chr1', [('+', <ChromVector object, chr1:[0,Inf)/+, step>),

('-', <ChromVector object, chr1:[0,Inf)/-, step>)]),
('chr2', [('+', <ChromVector object, chr2:[0,Inf)/+, step>),

('-', <ChromVector object, chr2:[0,Inf)/-, step>)])]

GenomicArray.auto_add_chroms
A boolean. This attribute is set to True if the GenomicArray was created with the "auto" argu-
ments for the chroms parameter. If it is true, an new chromosome will be added whenever needed.

Data access To access the data, use :class:GenomicInterval objects.

To set an single position or an interval, use:

>>> ga[HTSeq.GenomicPosition("chr1", 100, "+")] = 7
>>> ga[HTSeq.GenomicInterval("chr1", 250, 400, "+")] = 20

To read a single position:

>>> ga[HTSeq.GenomicPosition("chr1", 300, "+")]
20.0

ChromVector.steps(self)

To read an interval, use a GenomicInterval object as index, and obtain a ChromVector with a sub-view:

>>> iv = HTSeq.GenomicInterval("chr1", 250, 450, "+")
>>> v = ga[iv]
>>> v
<ChromVector object, chr1:[250,450)/+, step>
>>> list(v.steps())

50 Chapter 8. Genomic intervals and genomic arrays

HTSeq Documentation, Release 0.8.0

[(<GenomicInterval object 'chr1', [250,400), strand '+'>, 20.0),
(<GenomicInterval object 'chr1', [400,450), strand '+'>, 0.0)]

Note that you get (interval, value) pairs , i.e., you can conveniently cycle through them with:

>>> for iv, value in ga[iv].steps():
... print(iv, value)
chr1:[250,400)/+ 20.0
chr1:[400,450)/+ 0.0

GenomicArray.steps(self)
You can get all steps from all chromosomes by calling the arrays own steps method.

Modifying values

ChromVector implements the __iadd__ method. Hence you can use +=:

>>> ga[HTSeq.GenomicInterval("chr1", 290, 310, "+")] += 1000
>>> list(ga[HTSeq.GenomicInterval("chr1", 250, 450, "+")].steps())
[(<GenomicInterval object 'chr1', [250,290), strand '+'>, 20.0),
(<GenomicInterval object 'chr1', [290,310), strand '+'>, 1020.0),
(<GenomicInterval object 'chr1', [310,400), strand '+'>, 20.0),
(<GenomicInterval object 'chr1', [400,450), strand '+'>, 0.0)]

To do manipulations other than additions, use Chromvector’s apply method:

ChromVector.apply(func)

>>> ga[HTSeq.GenomicInterval("chr1", 290, 300, "+")].apply(lambda
→˓x: x * 2)
>>> list(ga[HTSeq.GenomicInterval("chr1", 250, 450, "+")].steps())
[(<GenomicInterval object 'chr1', [250,290), strand '+'>, 20.0),
(<GenomicInterval object 'chr1', [290,300), strand '+'>, 2040.0),
(<GenomicInterval object 'chr1', [300,310), strand '+'>, 1020.0),
(<GenomicInterval object 'chr1', [310,400), strand '+'>, 20.0),
(<GenomicInterval object 'chr1', [400,450), strand '+'>, 0.0)]

Writing to a file

GenomicArray.write_bedgraph_file(file_or_filename, strand=”.”, track_options=”“)
Write out the data in the GenomicArray as a BedGraph track. This is a subtype of the Wiggle format (i.e.,
the file extension is usually ”.wig”) and such files can be conveniently viewed in a genome browser, e.g.,
with IGB.

This works only for numerical data, i.e., datatype 'i' or 'd'. As a bedgraph track cannot store strand
information, you have to specify either '+' or '-' as the strand argument if your GenomicArray is
stranded (stranded==True). Typically, you will write two wiggle files, one for each strand, and display
them together.

Adding a chromosome

GenomicArray.add_chrom(chrom, length=sys.maxint, start_index=0)
Adds step vector(s) for a further chromosome. This is useful if you do not have a full list of chromosome
names yet when instantiating the GenomicArray.

8.3. GenomicArray 51

http://genome.ucsc.edu/goldenPath/help/bedgraph.html
http://genome.ucsc.edu/goldenPath/help/wiggle.html
http://igb.bioviz.org/

HTSeq Documentation, Release 0.8.0

GenomicArrayOfSets

A GenomicArrayOfSets is a sub-class of GenomicArray that deal with the common special case of overlap-
ping features. This is best explained by an example: Let’s say, we have two features, "geneA" and "geneB", that
are at overlapping positions:

>>> ivA = HTSeq.GenomicInterval("chr1", 100, 300, ".")
>>> ivB = HTSeq.GenomicInterval("chr1", 200, 400, ".")

In a GenomicArrayOfSets, the value of each step is a set and so can hold more than one object. The __iadd__
method is overloaded to add elements to the sets:

>>> gas = HTSeq.GenomicArrayOfSets(["chr1", "chr2"], stranded=False)
>>> gas[ivA] += "gene A"
>>> gas[ivB] += "gene B"
>>> [(st[0], sorted(st[1])) for st in gas[HTSeq.GenomicInterval("chr1", 0, 500, "."
→˓)].steps()]
[(<GenomicInterval object 'chr1', [0,100), strand '.'>, []),
(<GenomicInterval object 'chr1', [100,200), strand '.'>, ['gene A']),
(<GenomicInterval object 'chr1', [200,300), strand '.'>, ['gene A', 'gene B']),
(<GenomicInterval object 'chr1', [300,400), strand '.'>, ['gene B']),
(<GenomicInterval object 'chr1', [400,500), strand '.'>, [])]

class HTSeq.GenomicArrayOfSets(chroms, stranded = True)
Instantiation is as in GenomicArray , only that datatype is always 'O'.

52 Chapter 8. Genomic intervals and genomic arrays

CHAPTER 9

Read alignments

Concepts

There are a large number of different tools to align short reads to a reference. Most of them use their own output
format, even though the SAM format seems to become the common standard now that many of the newer tools use it.

HTSeq aims to offer a uniform way to analyse alignments from different tools. To this end, for all supported alignment
formats a parse class is offered that reads an alignment file and generates an iterator over the individual alignment
records. These are represented as objects of a sub-class of Alignment and hence all offer a common interface.

So, you can easily write code that should work for all aligner formats. As a simple example, consider this function
that counts the number of reads falling on each chromosome:

>>> import collections
>>> def count_in_chroms(alignments):
... counts = collections.defaultdict(lambda: 0)
... for almnt in alignments:
... if almnt.aligned:
... counts[almnt.iv.chrom] += 1
... return counts

If you have a SAM file (e.g., from BWA or BowTie), you can call it with:

>>> sorted(count_in_chroms(HTSeq.SAM_Reader("yeast_RNASeq_excerpt.sam")).items())
[('2-micron', 46), ('I', 362), ('II', 1724), ('III', 365), ('IV', 3015),
('IX', 648), ('V', 999), ('VI', 332), ('VII', 2316), ('VIII', 932),
('X', 1129), ('XI', 1170), ('XII', 4215), ('XIII', 1471), ('XIV', 1297),
('XV', 2133), ('XVI', 1509)]

If, however, you have done your alignment with Eland from the SolexaPipeline, which uses the “Solexa export” format,
you can use the same function, only using SolexaExportReader instead of SAM_Reader:

>>> count_in_chroms(HTSeq.SolexaExportReader("mydata_export.txt"))

53

http://samtools.sourceforge.net/SAM1.pdf

HTSeq Documentation, Release 0.8.0

Both class generate iterators of similar objects. On the other hand, some formats contain more information and then
the Alignment objects from these contain additional fields.

Parser classes

Depending on the format of your alignment file, choose from the following parsers:

class HTSeq.BowtieReader(filename_or_sequence)
class HTSeq.SAM_Reader(filename_or_sequence)
class HTSeq.BAM_Reader(filename_or_sequence)
class HTSeq.SolexaExportReader(filename_or_sequence)

All of these are derived from FileOrSequence. When asked for an iterator, they yield Alignment objects of
types BowtieAlignment, SAM_Alignment, or SolexaExportAlignment. See below for their properties.

Adding support for a new format is very easy. Ask me if you need something and I can probably add it right-away.
Alternatively, you can convert your format to the SAM format. The SAMtools contain Perl skripts to convert nearly
all common formats.

SAM_Reader.peek(num = 1):
Peek into a SAM file or connection, reporting the first num records. If you then call an iterator on
the SAM_Reader, the record will be yielded again.

Alignment and AlignmentWithSequenceReversal

class HTSeq.Alignment(read, iv)
This is the base class of all Alignment classes. Any class derived from Alignment has at least the following
attributes:

read
The read. An object of type SequenceWithQuality. See there for the sub-attributes.

Note that some aligners store the reverse complement of the read if it was aligned to the ‘-‘ strand. In
this case, the parser revers-complements the read again, so that you can be sure that the read is always
presented as it was sequenced (see also AlignmentWithSequenceReversal).

aligned
A boolean. Some formats (e.g., those of Maq and Bowtie) contain only aligned reads (and the aligner
collects the unaligned reads in a seperate FASTQ file if requested). For these formats, aligned is always
True. Other formats (e.g., SAM and Solexa Export) list all reads, including those which could not be
aligned. In that case, check aligned to see whether the read has an alignment.

iv
An object of class GenomicInterval or None.

The genomic interval to which the read was aligned (or None if aligned=False). See
GenomicInterval for the sub-attributes. Note that different formats have different conventions for
genomic coordinates. The parser class takes care of normalizing this, so that iv always adheres to the
conventions outlined in :class:GenomicInterval. Especially, all coordinates are counted from zero, not
one.

paired_end
A boolean. True if the read stems from a paired-end sequencing run. (Note: At the moment paired-end
data is only supported for the SAM format.)

54 Chapter 9. Read alignments

http://samtools.sourceforge.net/

HTSeq Documentation, Release 0.8.0

class HTSeq.AlignmentWithSequenceReversal(read_as_aligned, iv)
Some aligners store the reverse complement of the read if it was aligned to the ‘-‘ strand. For these align-
ers, the Alignment class is derived from AlignmentWithSequenceReversal, which undoes the reverse-
complement if necessary to ensure that the read attribute always presents the read in the ordder in which it was
sequenced.

To get better performance, this is done via lazy evaluation, i.e., the reverse complement is only calculated when
the read attribute is accessed for the first time. The original read as read from the file is stored as well. You
can access both with these attributes:

read_as_aligned
A SequenceWithQualities object. The read as it was found in the file.

read_as_sequenced
A SequenceWithQualities object. The read as it was sequenced, i.e., an alias for Alignment.
read.

Format-specific Alignment classes

Note: All format-specific Alignment classes take a string as argument for their constructor. This is a line from the
alignment file describing the alignment and is passed in by the corresponding Reader object. As you do not create
Alignment objects yourself but get them from the Reader object you typically never call the constructor yourself.

class HTSeq.BowtieAlignment(bowtie_line)
BowtieAlignment objects contain all the attributes from Alignment and
AlignmentWithSequenceReversal, and, in addition, these:

reserved
A string. The reserved field from the Bowtie output file. See the Bowtie manual for its meaning.

substitutions
A string. The substitutions string that describes mismatches in the format 22:A>C, 25:C>T to indicate
a change from A to C in position 22 and from C to T in position 25. No further parsing for this is offered
yet.

class HTSeq.SAM_Alignment(line)
BowtieAlignment objects contain all the attributes from Alignment and
AlignmentWithSequenceReversal, and, in addition, these:

aQual
An int. The alignment quality score in Phread style encoding.

cigar
A list of CigarOperation objects, as parsed from the extended CIGAR string. See
CigarOperation for details.

not_primary_alignment
A boolean. Whether the alignment is secondary. (See SAM format reference, flag 0x0100. See also
supplementary alignments, flag 0x0800.)

failed_platform_qc
A boolean. Whether the read failed a platform quality check. (See SAM format reference, flag 0x0200.)

pcr_or_optical_duplicate
A boolean. Whether the read is a PCR or optical duplicate. (See SAM format reference, flag 0x0400.)

supplementary
A boolean. Whether the alignment is supplementary. (See SAM format reference, flag 0x0800.)

9.4. Format-specific Alignment classes 55

HTSeq Documentation, Release 0.8.0

These methods access the optional fields:

optional_field(tag)
Returns the optional field tag. See SAM format reference for the defined tags (which are two-letter
strings).

optional_fields()
Returns a dict with all optional fields, using their tags as keys.

This method is useful to write out a SAM file:

get_sam_line()
Constructs a SAM line to describe the alignment, which is returned as a string.

Paired-end support

SAM_Alignment objects can represent paired-end data. If Alignment.paired_end is True, the
following fields may be used:

mate_aligned
A boolean. Whether the mate was aligned

pe_which
A string. Takes one of the values “first”, “second”, “unknown” and “not_paired_end”, to indicate
whether the read stems from the first or second pass of the paired-end sequencing.

proper_pair
Boolean. Whether the mates form a proper pair. (See SAM format reference, flag 0x0002.)

mate_start
A GenomicPosition object. The start (i.e., left-most position) of the mate’s alignment. Note
that mate_start.strand is opposite to iv.strand for proper pairs.

inferred_insert_size
An int. The inferred size of the insert between the reads.

HTSeq.pair_SAM_alignments(alnmt_seq)
This function takes a generator of SAM_Alignment objects (e.g., a SAM_Reader object) and yields a se-
quence of pairs of alignments. A typical use may be:

for first, second in HTSeq.SAM_Reader("some_paired_end_data.sam"):
print("Pair, consisting of")
print(" ", first)
print(" ", second)

Here, first and second are SAM_Alignment objects, representing two reads of the same cluster. For this
to work, the SAM file has to be arranged such that paired reads are always in adjacent lines. As the SAM format
requires that the query names (first column of the SAM file) is the same for mate pairs, this arrangement can
easily be achieved by sorting the SAM file lines lexicographically.

Special care is taken to properly pair up multiple alignment lines for the same read.

In the SAM format, alignments for paired-end reads must be reported in paired alignment records. If the mate
of an alignment record is missing, this fact is counted and, at the end, a warning stating the number of such
violating reads is issued. The singleton alignments are yielded as pairs, with the alignment in the first or second
element of the pair (depending on the sequencing pass it originates from) and the other element is set to None.

HTSeq.pair_SAM_alignments_with_buffer(alignments, max_buffer_size=3000000)
This function pairs up reads in a SAM file, in the same manner as pair_SAM_alignments() but does not
require that mated alignments appear in adjacent records, i.e., the SAM file does not need to be sorted by read
name beforehand. Rather, once the first alignment of a pair is encountered, it is stored in a buffer until its mated
alignment is encountered, and then both are yielded together as pair. It is recommended that the data should

56 Chapter 9. Read alignments

HTSeq Documentation, Release 0.8.0

be sorted by position, because then, mated alignments will typicalle not be too distant from each other in the
file and hence only a limited number of alignments have to be held concurrently in the buffer, thereby reducing
memory needs. To avoid overflowing the system’s memory, the function stops and raises an exception once the
number of alignment records held in the buffer exceeds max_buffer_size.

class HTSeq.SolexaExportAlignment(line)
SolexaExportAlignment objects contain all the attributes from Alignment and
AlignmentWithSequenceReversal, and, in addition, these:

passed_filter
A boolean. Whether the read passed the chastity filter. If passed_filter==False, then
aligned==False.

nomatch_code
A string. For aligned==False, a code indicating why no match could be found. See the description of
the 11th column of the Solexa Export format in the SolexaPipeline manual for the meaning of the codes.
For aligned==True, nomatch_code==None.

Multiple alignments

HTSeq.bundle_multiple_alignments(sequence_of_alignments)

Some alignment programs, e.g., Bowtie, can output multiple alignments, i.e., the same read is reported consecutively
with different alignments. This function takes an iterator over alignments (as provided by one of the alignment Reader
classes) and bundles consecutive alignments regarding the same read to a list of Alignment objects and returns an
iterator over these.

CIGAR strings

When reading in SAM files, the CIGAR string is parsed and stored as a list of CigarOperation objects. For
example, assume, a 36 bp read has been aligned to the ‘+’ strand of chromosome ‘chr3’, extending to the right from
position 1000, with the CIGAR string "20M6I10M". The function :function:parse_cigar spells out what this means:

>>> HTSeq.parse_cigar("20M6I10M", 1000, "chr2", "+")
[< CigarOperation: 20 base(s) matched on ref iv chr2:[1000,1020)/+, query iv [0,20) >,
< CigarOperation: 6 base(s) inserted on ref iv chr2:[1020,1020)/+, query iv [20,26) >
→˓,
< CigarOperation: 10 base(s) matched on ref iv chr2:[1020,1030)/+, query iv [26,36) >
→˓]

We can see that the map includes an insert. Hence, the affected coordinates run from 1000 to 1030 on the reference
(i.e., the chromosome) but only from 0 to 36 on the query (i.e., the read).

We can convenient access to the parsed data by looking at the attributes of the three CigarOperation objects in
the list.

class HTSeq.CigarOperation(...)
The available attributes are:

type
The type of the operation. One of the letters M, I, D, N, S, H, or P. Use the dict cigar_operation_names
to transform this to names:

9.5. Multiple alignments 57

HTSeq Documentation, Release 0.8.0

>>> sorted(HTSeq.cigar_operation_names.items())
[('D', 'deleted'),
('H', 'hard-clipped'),
('I', 'inserted'),
('M', 'matched'),
('N', 'skipped'),
('P', 'padded'),
('S', 'soft-clipped')]

size
The number of affected bases, an int.

ref_iv
A GenomicInterval specifying the affected bases on the reference. In case of an insertion, this is a
zero-length interval.

query_from
query_to

Two ints, specifying the affected bases on the query (the read). In case of a deletion, query_from ==
query_to.

check()
Checks the CigarOperation object for consitency. Returns a boolean.

58 Chapter 9. Read alignments

CHAPTER 10

Features

The easiest way to work with annotation is to use GenomicArray with typecode=='O' or
GenomicArrayOfSets. If you have your annotation in a flat file, with each line describing a feature and
giving its coordinates, you can read in the file line for line, parse it (see the standard Python module csv), use the
information on chromosome, start, end and strand to create a GenomicInterval object and then store the data
from the line in the genomic array at the place indicated by the genomic interval.

For example, if you have data in a tab-separated file as follows:

>>> for line in open("feature_list.txt"):
... print(line)
chr2 100 300 + "gene A"
chr2 200 400 - "gene B"
chr3 150 270 + "gene C"

Then, you could load this information as follows:

>>> import csv
>>> genes = HTSeq.GenomicArray(["chr1", "chr2", "chr3"], typecode='O')
>>> for (chrom, start, end, strand, name) in \
... csv.reader(open("feature_list.txt"), delimiter="\t"):
... iv = HTSeq.GenomicInterval(chrom, int(start), int(end), strand)
... genes[iv] = name

Now, to see whether there is a feature at a given GenomicPosition, you just query the genomic array:

>>> print(genes[HTSeq.GenomicPosition("chr3", 100, "+")])
None
>>> print(genes[HTSeq.GenomicPosition("chr3", 200, "+")])
gene C

See GenomicArray and GenomicArrayOfSets for more sophisticated use.

59

HTSeq Documentation, Release 0.8.0

GFF_Reader and GenomicFeature

One of the most common format for annotation data is GFF (which includes GTF as a sub-type). Hence, a parse for
GFF files is included in HTSeq.

As usual, there is a parser class, called GFF_Reader, that can generate an iterator of objects describing the features.
These objects are of type :class‘GenomicFeature‘ and each describes one line of a GFF file. See Section A tour through
HTSeq for an example.

class HTSeq.GFF_Reader(filename_or_sequence, end_included=True)
As a subclass of FileOrSequence, GFF_Reader can be initialized either with a file name or with an open
file or another sequence of lines.

When requesting an iterator, it generates objects of type GenomicFeature.

The GFF specification is unclear on whether the end coordinate marks the last base-pair of the feature (closed
intervals, end_included=True) or the one after (half-open intervals, end_included=False). The de-
fault, True, is correct for Ensembl GTF files. If in doubt, look for a CDS or stop_codon feature in you GFF
file. Its length should be divisible by 3. If “end-start” is divisible by 3, you need end_included=False. If
“end-start+1” is divisible by 3, you need end_included=True.

GFF_Reader will convert the coordinates from GFF standard (1-based, end maybe included) to HTSeq standard
(0-base, end not included) by subtracting 1 from the start position, and, for end_included=True, also
subtract 1 from the end position.

metadata
GFF_Reader skips all lines starting with a single ‘#’ as this marks a comment. However, lines
starying with ‘##’ contain meta data (at least accoring to the Sanger Institute’s version of the GFF
standard.) Such meta data has the format ##key value. When a metadata line is encountered,
it is added to the metadata dictionary.

class HTSeq.GenomicFeature(name, type_, interval)
A GenomicFeature object always contains the following attributes:

name
A name of ID for the feature. As the GFF format does not have a dedicated field for this, the
value of the first attribute in the attributes column is assumed to be the name of ID.

type
The type of the feature, i.e., a string like "exon" or "gene". For GFF files, the 3rd column
(feature) is taken as the type.

interval
The interval that the feature covers on the genome. For GFF files, this information is taken from
the first (seqname), the forth (start), the fifth (end), and the seventh (strand) column.

When created by a GFF_Reader object, the following attributes are also present, with the information from
the remaining GFF columns:

source
The 2nd column, denoted source in the specification, and intended to specify the data source.

frame
The 8th column (frame), giving the reading frame in case of a coding feature. Its value is an
integer (0, 1, or 2), or the string '.' in case that a frame is not specified or would not make
sense.

score
The 6th column (score), giving some numerical score for the feature. Its value is a float, or '.'
in case that a score is not specified or would not make sense

60 Chapter 10. Features

http://www.sanger.ac.uk/resources/software/gff/spec.html
http://mblab.wustl.edu/GTF22.html

HTSeq Documentation, Release 0.8.0

attr
The last (9th) column of a GFF file contains attributes, i.e. a list of name/value pairs. These
are transformed into a dict, such that, e.g., gf.attr['gene_id'] gives the value of the at-
tribute gene_id in the feature described by GenomicFeature object gf. The parser for the
attribute field is reasonably flexible to deal with format variations (it was never clearly estab-
lished whetehr name and value should be sperarated by a colon or an equal sign, and whether
quotes need to be used) and also does a URL style decoding, as is often required.

In order to write a GFF file from a sequence of features, this method is provided:

get_gff_line(with_equal_sign=False)
Returns a line to describe the feature in the GFF format. This works even if the optional attributes
given above are missing. Call this for each of your GenomicFeature objects and write the
lines into a file to get a GFF file.

HTSeq.parse_GFF_attribute_string(attrStr, extra_return_first_value=False)
This is the function that GFF_Reader uses to parse the attribute column. (See GenomicFeature.attr.)
It returns a dict, or, if requested, a pair of the dict and the first value.

10.1. GFF_Reader and GenomicFeature 61

HTSeq Documentation, Release 0.8.0

62 Chapter 10. Features

CHAPTER 11

Other parsers

VCF_Reader and VariantCall

VCF is a text file format (most likely stored in a compressed manner). It contains meta-information lines, a header
line, and then data lines each containing information about a position in the genome.

There is an option whether to contain genotype information on samples for each position or not.

See the definitions at

As usual, there is a parser class, called VCF_Reader, that can generate an iterator of objects describing the structural
variant calls. These objects are of type VariantCall and each describes one line of a VCF file. See below for an
example.

class HTSeq.VCF_Reader(filename_or_sequence)
As a subclass of FileOrSequence, VCF_Reader can be initialized either with a file name or with an open
file or another sequence of lines.

When requesting an iterator, it generates objects of type VariantCall.

metadata
VCF_Reader skips all lines starting with a single ‘#’ as this marks a comment. However, lines
starying with ‘##’ contain meta data (Information about filters, and the fields in the ‘info’-
column).

parse_meta(header_filename = None)
The VCF_Reader normally does not parse the meta-information and also the VariantCall
does not contain unpacked metainformation. The function parse_meta reads the header informa-
tion either from the attached FileOrSequence or from a file connection being opened to a
provided ‘header-filename’. This is important if you want to access sample-specific information
for the :class‘VariantCall‘s in your .vcf-file.

make_info_dict()
This function will parse the info string and create the attribute infodict which contains a dict
with key:value-pairs containig the type-information for each entry of the VariantCall‘s info
field.

63

HTSeq Documentation, Release 0.8.0

class HTSeq.VariantCall(line, nsamples = 0, sampleids=[])
A VariantCall object always contains the following attributes:

alt
The alternative base(s) of the VariantCall. This is a list containing all called alternatives.

chrom
The Chromosome on which the VariantCall was called.

filter
This specifies if the VariantCall passed all the filters given in the .vcf-header (value=PASS)
or contains a list of filters that failed (the filter-id’s are specified in the header also).

format
Contains the format string specifying which per-sample information is stored in
VariantCall.samples.

id
The id of the VariantCall, if it has been found in any database, for unknown variants this
will be ”.”.

info
This will contain either the string version of the info field for this VariantCall or a dict with
the parsed and processed info-string.

pos
A HTSeq.GenomicPosition that specifies the position of the VariantCall.

qual
The quality of the VariantCall.

ref
The reference base(s) of the VariantCall.

samples
A dict mapping sample-id’s to subdicts which use the VariantCall.format as keys to store
the per-sample information.

unpack_info(infodict)
This function parses the info-string and replaces it with a dict rperesentation if the infodict of
the originating VCF_Reader is provided.

Example Workflow for reading the dbSNP in VCF-format (obtained from dbSNP
<ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/v4.0/00-All.vcf.gz>_):

>>> vcfr = HTSeq.VCF_Reader("00-All.vcf.gz")
>>> vcfr.parse_meta()
>>> vcfr.make_info_dict()
>>> for vc in vcfr:
... print vc,
1:10327:'T'->'C'
1:10433:'A'->'AC'
1:10439:'AC'->'A'
1:10440:'C'->'A'

FIXME The example above is not run, as the example file is still missing!

64 Chapter 11. Other parsers

HTSeq Documentation, Release 0.8.0

Wiggle Reader

The Wiggle format (file extension often .wig) is a format to describe numeric scores assigned to base-pair positions
on a genome. The class WiggleReader is parser for such files.

class HTSeq.WiggleReader(filename_or_sequence, verbose=True)
The class is instatiated with the file name of a Wiggle file, or a sequence of lines in Wiggle format. A
WiggleReader object generates an iterator, which yields pairs of the form (iv, score), where iv is
a GenomicInterval object and score is a float with the score that the file assigns to the specified inter-
val. If verbose is set to True, the user is alerted to skipped lines (comments or browser lines) by a message
printed to the standard output.

BED Reader

The BED format is a format originally used to describe gene models but is also commonly used to describe other
genomic features.

class HTSeq.BED_Reader(filename_or_sequence)
The class is instatiated with the file name of a BED file, or a sequence of lines in BED format. A BED_Reader
object generates an iterator, which yields a GenomicFeature object for each line in the BED file (except for
lines starting with track, whcih are skipped).

The attributes of the yielded GenomicFeature objects are as follows:

iv a GenomicInterval object with the coordinates as given by the 1st, 2nd, 3rd, and 6th column of the
BED file. If the BED file has less than 6 columns, the strand is set to “.”.

name the name of feature as given in the 4th column, or unnamed, if the file has only three columns

type always the string BED line

score a float with the score as given by the 5th column (or None if the BED file has less 5 columns).

thick a GenomicInterval object containg the “thick” part of the feature, as specified by the 6th and 7th
column, with chromosome and strand copied from iv (or None if the BED file has less 7 columns).

itemRgb a list of three int values, taken from the 8th column (None if the BED file has less 8 columns). In
a BED file, this triple is meant to specify the colour in which the feature should be drawn in a browser.

11.2. Wiggle Reader 65

http://genome.ucsc.edu/goldenPath/help/wiggle.html
http://genome.ucsc.edu/FAQ/FAQformat.html#format1

HTSeq Documentation, Release 0.8.0

66 Chapter 11. Other parsers

CHAPTER 12

Miscellaneous

FileOrSequence

class HTSeq.FileOrSequence(filename_or_sequence)
This class is a a canvenience wrapper around a file.

The construcutor takes one argument, which may either be a string, which is interpreted as a file name (possibly
with path), or a connection, by which we mean a text file opened for reading, or any other object that can provide
an iterator over strings (lines of the file).

The advantage of passing a file name instead of an already opened file is that if an iterator is requested several
times, the file will be re-opened each time. If the file is already open, its lines can be read only once, and then,
the iterator stays exhausted.

Furthermore, if a file name is passed that end in ”.gz” or ”.gzip” (case insensitive), it is transparently gunzipped.

fos
The argument passed to the constructor, i.e., a filename or a sequence

line_no
The line number (1-based) of the most recently read line. Initially None.

get_line_number_string()
Returns a string describing the position in the file. Useful for error messages.

Version

HTSeq.__version__
a string containing the current version

67

HTSeq Documentation, Release 0.8.0

68 Chapter 12. Miscellaneous

CHAPTER 13

Quality Assessment with htseq-qa

The Python script htseq-qa takes a file with sequencing reads (either raw or aligned reads) and produces a PDF file
with useful plots to assess the technical quality of a run.

Plot

Here is a typical plot:

69

HTSeq Documentation, Release 0.8.0

The plot is made from a SAM file, which contained aligned and unalignable reads. The left column is made from the
non-aligned, the right column from the aligned reads. The header informs you about the name of the SAM file, and
the number of reads.

The upper row shows how often which base was called for each position in the read. In this sample, the non-alignable
reads have a clear excess in A. The aligned reads have a balance between complementing reads: A and C (reddish
colours) have equal levels, and so do C and G (greenish colours). The sequences seem to be AT rich. Furthermore,
nearly all aligned reads start with a T, followed by an A, and then, a C in 70% and an A in 30% of the reads. Such an
imbalance would be reason for concern if it has no good explanation. Here, the reason is that the fragmentation of the
sample was done by enzyme digestion.

The lower half shows the abundance of base-call quality scores at the different positions in the read. Nearly all aligned
reads have a quality of 34 over their whole length, while for the non-aligned reads, some reads have lower quality
scores towards their ends.

Usage

Note that htseq-qa needs matplotlib to produce the plot, so you need to install this module, as described here on
the matplotlib web site.

After you have installed HTSeq (see Prequisites and installation) and matplotlib, you can run htseq-qa from the
command line:

htseq-qa [options] read_file

70 Chapter 13. Quality Assessment with htseq-qa

http://matplotlib.sourceforge.net/users/installing.html

HTSeq Documentation, Release 0.8.0

If the file htseq-qa is not in your path, you can, alternatively, call the script with

python -m HTSeq.scripts.qa [options] read_file

The read_file is either a FASTQ file or a SAM file. For a SAM file, a plot with two columns is produced as above, for
a FASTQ file, you get only one column.

The output is written into a file with the same name as read_file, with the suffix .pdf added. View it with a PDF
viewer such as the Acrobat Reader.

Options

-t <type>, --type=<type>
The file type of the read_file. Supported values for <type> are:

•sam: a SAM file (Note that the SAMtools contain Perl scripts to convert most alignment formats to SAM)

•solexa-export: an _export.txt file as produced by the SolexaPipeline software after aligning
with Eland (htseq-qa expects the new Solexa quality encoding as produced by version 1.3 or newer of
the SolexaPipeline)

•fastq: a FASTQ file with standard (Sanger or Phred) quality encoding

•solexa-fastq: a FASTQ file with Solexa quality encoding, as produced by the SolexaPipeline after
base-calling with Bustard (htseq-qa expects the new Solexa quality encoding as produced by version
1.3 or newer of the SolexaPipeline)

-o <outfile>, --outfile=<outfile>
output filename (default is <read_file>‘‘.pdf‘‘)

-r <readlen>, --readlength=<readlen>
the maximum read length (when not specified, the script guesses from the file

-g <gamma>, --gamma=<gamma>
the gamma factor for the contrast adjustment of the quality score plot

-n, --nosplit
do not split reads in unaligned and aligned ones, i.e., produce a one-column plot

-m, --maxqual
the maximum quality score that appears in the data (default: 40)

-h, --help
Show a usage summary and exit

13.2. Usage 71

http://samtools.sourceforge.net/

HTSeq Documentation, Release 0.8.0

72 Chapter 13. Quality Assessment with htseq-qa

CHAPTER 14

Counting reads in features with htseq-count

Given a file with aligned sequencing reads and a list of genomic features, a common task is to count how many reads
map to each feature.

A feature is here an interval (i.e., a range of positions) on a chromosome or a union of such intervals.

In the case of RNA-Seq, the features are typically genes, where each gene is considered here as the union of all its
exons. One may also consider each exon as a feature, e.g., in order to check for alternative splicing. For comparative
ChIP-Seq, the features might be binding region from a pre-determined list.

Special care must be taken to decide how to deal with reads that align to or overlap with more than one feature. The
htseq-count script allows to choose between three modes. Of course, if none of these fits your needs, you can
write your own script with HTSeq. See the chapter A tour through HTSeq for a step-by-step guide on how to do so.
See also the FAQ at the end, if the following explanation seems too technical.

The three overlap resolution modes of htseq-count work as follows. For each position i in the read, a set S(i) is
defined as the set of all features overlapping position i. Then, consider the set S, which is (with i running through all
position within the read or a read pair)

• the union of all the sets S(i) for mode union. This mode is recommended for most use cases.

• the intersection of all the sets S(i) for mode intersection-strict.

• the intersection of all non-empty sets S(i) for mode intersection-nonempty.

If S contains precisely one feature, the read (or read pair) is counted for this feature. If S is empty, the read (or read
pair) is counted as no_feature. If S contains more than one feature, htseq-count behaves differently based on
the --nonunique option:

• --nonunique none (default): the read (or read pair) is counted as ambiguous and not counted for any
features. Also, if the read (or read pair) aligns to more than one location in the reference, it is scored as
alignment_not_unique.

• --nonunique all: the read (or read pair) is counted as ambiguous and is also counted in all features to
which it was assigned. Also, if the read (or read pair) aligns to more than one location in the reference, it is
scored as alignment_not_unique and also separately for each location.

Notice that when using --nonunique all the sum of all counts will not be equal to the number of reads (or read
pairs), because those with multiple alignments or overlaps get scored multiple times.

73

HTSeq Documentation, Release 0.8.0

The following figure illustrates the effect of these three modes and the --nonunique option:

Usage

After you have installed HTSeq (see Prequisites and installation), you can run htseq-count from the command
line:

htseq-count [options] <alignment_files> <gff_file>

If the file htseq-count is not in your path, you can, alternatively, call the script with

74 Chapter 14. Counting reads in features with htseq-count

HTSeq Documentation, Release 0.8.0

python -m HTSeq.scripts.count [options] <alignment_files> <gff_file>

The <alignment_files> are one or more files containing the aligned reads in SAM format. (SAMtools contain
Perl scripts to convert most alignment formats to SAM.) Make sure to use a splicing-aware aligner such as STAR.
HTSeq-count makes full use of the information in the CIGAR field.

To read from standard input, use - as <alignment_files>.

If you have paired-end data, pay attention to the -r option described below.

The <gff_file> contains the features in the GFF format.

The script outputs a table with counts for each feature, followed by the special counters, which count reads that were
not counted for any feature for various reasons. The names of the special counters all start with a double underscore,
to facilitate filtering. (Note: The double unscore was absent up to version 0.5.4). The special counters are:

• __no_feature: reads (or read pairs) which could not be assigned to any feature (set S as described above
was empty).

• __ambiguous: reads (or read pairs) which could have been assigned to more than one feature and hence
were not counted for any of these, unless the --nonunique all option was used (set S had more than one
element).

• __too_low_aQual: reads (or read pairs) which were skipped due to the -a option, see below

• __not_aligned: reads (or read pairs) in the SAM file without alignment

• __alignment_not_unique: reads (or read pairs) with more than one reported alignment. These reads are
recognized from the NH optional SAM field tag. (If the aligner does not set this field, multiply aligned reads will
be counted multiple times, unless they getv filtered out by due to the -a option.) Note that if the --nonunique
all option was used, these reads (or read pairs) are still assigned to features.

Important: The default for strandedness is yes. If your RNA-Seq data has not been made with a strand-specific
protocol, this causes half of the reads to be lost. Hence, make sure to set the option --stranded=no unless you
have strand-specific data!

Options

-f <format>, --format=<format>
Format of the input data. Possible values are sam (for text SAM files) and bam (for binary BAM files). Default
is sam.

-r <order>, --order=<order>
For paired-end data, the alignment have to be sorted either by read name or by alignment position. If your data
is not sorted, use the samtools sort function of samtools to sort it. Use this option, with name or pos
for <order> to indicate how the input data has been sorted. The default is name.

If name is indicated, htseq-count expects all the alignments for the reads of a given read pair to appear in
adjacent records in the input data. For pos, this is not expected; rather, read alignments whose mate alignment
have not yet been seen are kept in a buffer in memory until the mate is found. While, strictly speaking, the latter
will also work with unsorted data, sorting ensures that most alignment mates appear close to each other in the
data and hence the buffer is much less likely to overflow.

--max-reads-in-buffer=<number>
When <alignment_file> is paired end sorted by position, allow only so many reads to stay in memory until the
mates are found (raising this number will use more memory). Has no effect for single end or paired end sorted
by name. (default: 30000000)

14.1. Usage 75

http://www.htslib.org/
https://github.com/alexdobin/STAR
http://www.sanger.ac.uk/resources/software/gff/spec.html

HTSeq Documentation, Release 0.8.0

-s <yes/no/reverse>, --stranded=<yes/no/reverse>
whether the data is from a strand-specific assay (default: yes)

For stranded=no, a read is considered overlapping with a feature regardless of whether it is mapped to the
same or the opposite strand as the feature. For stranded=yes and single-end reads, the read has to be mapped
to the same strand as the feature. For paired-end reads, the first read has to be on the same strand and the second
read on the opposite strand. For stranded=reverse, these rules are reversed.

-a <minaqual>, --a=<minaqual>
skip all reads with alignment quality lower than the given minimum value (default: 10 — Note: the default used
to be 0 until version 0.5.4.)

-t <feature type>, --type=<feature type>
feature type (3rd column in GFF file) to be used, all features of other type are ignored (default, suitable for
RNA-Seq analysis using an Ensembl GTF file: exon)

-i <id attribute>, --idattr=<id attribute>
GFF attribute to be used as feature ID. Several GFF lines with the same feature ID will be considered as parts
of the same feature. The feature ID is used to identity the counts in the output table. The default, suitable for
RNA-Seq analysis using an Ensembl GTF file, is gene_id.

--additional-attr=<id attributes>
Additional feature attributes, which will be printed as an additional column after the primary attribute column
but before the counts column(s). The default is none, a suitable value to get gene names using an Ensembl GTF
file is gene_name.

-m <mode>, --mode=<mode>
Mode to handle reads overlapping more than one feature. Possible values for <mode> are union,
intersection-strict and intersection-nonempty (default: union)

--nonunique=<nonunique mode>
Mode to handle reads that align to or are assigned to more than one feature in the overlap <mode> of choice
(see -m option). <nonunique mode> are none and all (default: none)

-o <samout>, --samout=<samout>
write out all SAM alignment records into an output SAM file called <samout>, annotating each line with its
assignment to a feature or a special counter (as an optional field with tag ‘XF’)

-q, --quiet
suppress progress report and warnings

-h, --help
Show a usage summary and exit

Frequenctly asked questions

My shell reports “command not found” when I try to run “htseq-count”. How can I launch the script? The file
“htseq-count” has to be in the system’s search path. By default, Python places it in its script directory, which
you have to add to your search path. A maybe easier alternative is to write python -m HTSeq.scripts.
count instead of htseq-count, followed by the options and arguments, which will launch the htseq-count
script as well.

Why are multi-mapping reads and reads overlapping multiple features discarded rather than counted for each feature?
The primary intended use case for htseq-count is differential expression analysis, where one compares the
expression of the same gene across samples and not the expression of different genes within a sample. Now,
consider two genes, which share a stretch of common sequence such that for a read mapping to this stretch, the
aligner cannot decide which of the two genes the read originated from and hence reports a multiple alignment.
If we discard all such reads, we undercount the total output of the genes, but the ratio of expression strength
(the “fold change”) between samples or experimental condition will still be correct, because we discard the

76 Chapter 14. Counting reads in features with htseq-count

http://mblab.wustl.edu/GTF22.html
http://en.wikipedia.org/wiki/PATH_(variable)

HTSeq Documentation, Release 0.8.0

same fratcion of reads in all samples. On the other hand, if we counted these reads for both genes, a subsequent
diffential-expression analysis might find false positives: Even if only one of the gene changes increases its
expression in reaction to treatment, the additional read caused by this would be counted for both genes, giving
the wrong appearance that both genes reacted to the treatment.

I have used a GTF file generated by the Table Browser function of the UCSC Genome Browser, and most reads are counted as ambiguous. Why?
In these files, the gene_id attribute incorrectly contains the same value as the transcript_id attribute
and hence a different value for each transcript of the same gene. Hence, if a read maps to an exon shared by
several transcripts of the same gene, this will appear to htseq-count as and overlap with several genes.
Therefore, these GTF files cannot be used as is. Either correct the incorrect gene_id attributes with a suitable
script, or use a GTF file from a different source.

Can I use htseq-count to count reads mapping to transcripts rather than genes? In principle, you could instruct
htseq-count to count for each of a gene’s transcript individually, by specifying --idattr transcript_id.
However, all reads mapping to exons shared by several transcripts will then be considered ambiguous. (See sec-
ond question.) Counting them for each transcript that contains the exons would be possible but makes little
sense for typical use cases. (See first question.) If you want to perform differential expression analysis on the
level of individual transcripts, maybe ahve a look at our paper on DEXSeq for a discussion on why we prefer
performing such analyses on the level of exons instead.

For paired-end data, does htseq-count count reads or read pairs? Read pairs. The script is designed to count “units
of evidence” for gene expression. If both mates map to the same gene, this still only shows that one cDNA
fragment originated from that gene. Hence, it should be counted only once.

What happens if the two reads in a pair overlap two different features? The same as if one read overlaps two fea-
tures: The read or read pair is counted as ambiguous.

What happend if the mate of an aligned read is not aligned? For the default mode “union”, only the aligned read
determines how the read pair is counted. For the other modes, see their description.

Most of my RNA-Seq reads are counted as ‘‘__no_feature‘‘. What could have gone wrong? Common causes in-
clude: - The --stranded option was set wrongly. Use a genome browser (e.g., IGV) to check. - The
GTF file uses coordinates from another reference assembly as the SAM file. - The chromosome names differ
between GTF and SAM file (e.g., chr1 in one file and jsut 1 in the other).

Which overlap mode should I use? When I wrote htseq-count, I was not sure which option is best and included
three possibilities. Now, several years later, I have seen very few cases where the default union would not be
appropriate and hence tend to recommend to just stick to union.

I have a GTF file? How do I convert it to GFF? No need to do that, because GTF is a tightening of the GFF format.
Hence, all GTF files are GFF files, too. By default, htseq-count expects a GTF file.

I have a GFF file, not a GTF file. How can I use it to count RNA-Seq reads? The GTF format specifies, inter alia,
that exons are marked by the word exon in the third column and that the gene ID is given in an attribute named
gene_id, and htseq-count expects these words to be used by default. If you GFF file uses a word other than
exon in its third column to mark lines describing exons, notify htseq-count using the --type option. If
the name of the attribute containing the gene ID for exon lines is not gene_id, use the --idattr. Often, its
is, for example, Parent, GeneID or ID. Make sure it is the gene ID and not the exon ID.

How can I count overlaps with features other than genes/exons? If you have GFF file listing your features, use it
together with the --type and --idattr options. If your feature intervals need to be computed, you are
probably better off writing your own counting script (provided you have some knowledge of Python). Follow
the tutorial in the other pages of this documentation to see how to use HTSeq for this.

How should I cite htseq-count in a publication? Please cite HTSeq as follows: S Anders, T P Pyl, W Huber: HTSeq
— A Python framework to work with high-throughput sequencing data. bioRxiv 2014. doi: 10.1101/002824.
(This is a preprint currently under review. We will replace this with the reference to the final published version
once available.)

14.1. Usage 77

http://dx.doi.org/10.1101/gr.133744.111
http://dx.doi.org/10.1101/002824

HTSeq Documentation, Release 0.8.0

78 Chapter 14. Counting reads in features with htseq-count

CHAPTER 15

Version history

Version 0.8.0

2017-06-07

This release adds a few options to htseq-count:

• --nonunique handles non-uniquely mapped reads

• --additional-attr adds an optional column to the output (typically for human-readable gene names)

• --max-reads-in-buffer allows increasing the buffer size when working with paired end, coordinate
sorted files

Moreover, htseq-count can now take more than one input file and prints the output with one column per input file.

Finally, parts of the code have been streamlined or modernized, documentation has been moved to readthedocs, and
other minor changes.

Version 0.7.2

2017-03-24

This release effectively merges the Python2 and Python3 branches.

Enhancements:

• pip install HTSeq works for both Python 2.7 and 3.4+

Version 0.7.1

2017-03-16

Enhancements:

79

HTSeq Documentation, Release 0.8.0

• installs from PyPI

Version 0.7.0

2017-02-07

Enhancements:

• understands SAMtools optional field B (used sometimes in STAR aligner)

• write fasta files in a single line

• better docstrings thanks to SWIG 3

Bugfixes:

• fixed tests and docs in .rst files

Support bumps:

• supports pysam >=0.9.0

New maintainer: Fabio Zanini.

Version 0.6.1

2014-02-27

• added parser classes for BED and Wiggle format

Patch versions:

• 0.6.1p1 (2014-04-13)

– Fixed incorrect version tag

• 0.6.1p2 (2014-08-09)

– some improvements to documentation

Version 0.6.0

2014-02-26

• Several changes and improvements to htseq-count:

– BAM files can now be read natively. (New option --format)

– Paired-end SAM files can be used also if sorted by position. No need any mroe to sort by name. (New
option --order.)

– Documentation extended by a FAQ section.

– Default for --minaqual is now 10. (was: 0)

• New chapter in documentation, with more information on counting reads.

• New function pair_SAM_alignments_with_buffer to implement pairing for position-sorted SAM
files.

80 Chapter 15. Version history

HTSeq Documentation, Release 0.8.0

Version 0.5.4

2013-02-20

Various bugs fixed, including

• GFF_Reader interpreted the constructor’s “end_included” flag in the wrong way, hence the end position of
intervals of GFF features was off by 1 base pair before

• htseq-count no longer warns about missing chromosomes, as this warning was often misleading. Also, these
reads are no properly included in the “no_feature” count.

• default for “max_qual” in “htseq-qa” is now 41, to accommodate newer Illumina FASTQ files

• BAM_Reader used to incorrectly label single-end reads as paired-end

Patch versions:

• v0.5.4p1 (2013-02-22):

– changed default for GFF_Reader to end_included=True, which is actually the correct style for Ensemble
GTF files. Now the behavious should be as it was before.

• v0.5.4p2 (2013-04-18):

– fixed issue blocking proper built on Windows

• v0.5.4p3 (2013-04-29):

– htseq-count now correctly skips over “M0” cigar operations

• v0.5.4p4 (2013-08-28):

– added .get_original_line() function to VariantCall

– firex a bug with reads not being read as paired if they were not flagged as proper pair

• v0.5.4p5 (2013-10-02/2013-10-10):

– parsing of GFF attribute field no longer fails on quoted semicolons

– fixed issue with get_line_number_string

Version 0.5.3

2011-06-29

• added the ‘–stranded=reverse’ option to htseq-count

Patch versions:

• v0.5.3p1 (2011-07-15):

– fix a bug in pair_sam_Alignment (many thanks for Justin Powell for finding the bug and suggesting a
patch)

• v0.5.3p2 (2011-09-15)

– fixed a bug (and a documentation bug) in trim_left/right_end_with_quals

• v0.5.3p3 (2011-09-15)

– p2 was built improperly

• v0.5.3p5 (2012-05-29)

15.7. Version 0.5.4 81

HTSeq Documentation, Release 0.8.0

– added ‘to_line’ function to VariantCall objects and ‘meta_info’ function to VCF_Reader objects to print
VCF-lines / -headers respectively

• v0.5.3p5b (2012-06-01) - added ‘flag’ field to SAM_Alignment objects and fixed ‘get_sam_line’ function of
those

• v0.5.3p6 (2012-06-11) - fixed mix-up between patches p3, p4 and p5

• v0.5.3p7 (2012-06-13) - switched global pysam import to on-demand version

• v0.5.3p9ur1 (2012-08-31) - corrected get_sam_line: tab isntead of space between optional fields

Version 0.5.2

2011-06-24

• added the ‘–maxqual’ option to htseq-qa

Version 0.5.1

2011-05-03

• added steps method to GenomicArray

Patch versions:

• v0.5.1p1 (2011-05-11):

– fixed a bug in step_vector.h causing linkage failure under GCC 4.2

• v0.5.1p2 (2011-05-12):

– fixed pickling

• v0.5.1p3 (2011-05-22):

– fixed quality plot in htseq-qa (top pixel row, for quality score 40, was cut off)

Version 0.5.0

2011-04-21

• refactoring of GenomicArray class:

– field step_vectors replaced with chrom_vector. These now contain dicts of dicts of
ChromVector objects rather than StepVector ones.

– chrom_vectors is now always a dict of dict, even for unstranded GenomicArrays to make it easier to
loop over them. (The inner dict has either keys "+" and "-", or just one key, ".".)

– The new ChromVector class wraps the actual vector and supports three different storage modes: step,
ndarray and memmap, the latter two being numpy arrays, without and with memory mapping.

– The GenomicArray constructor now take two new arguments, one for the storage class, one for the
memmap directory (if needed).

– The add_value methods had been replaced with an __iadd__ method, to enable the += semantics.

– Similarily, += for GenomicArrayOfSets adds an element to the sets.

82 Chapter 15. Version history

HTSeq Documentation, Release 0.8.0

– Instead of get_steps, now use steps.

• new parser class VCF_Reader and record class VariantCall

• new parser class BAM_Reader, to add BAM support (including indexed random access) (requires PySam to be
installed)

• new documentation page A detailed use case: TSS plots

• Fasta_Reader now allows indexed access to Fasta files (requires Pysam to be installed)

• peek function removed

Patch Versions:

• v0.5.0p1 (2011-04-22):

– build was incomplete; fixed

• v0.5.0p2 (2011-04-22):

– build was still faulty; new try

• v0.5.0p3 (2011-04-26)

– fixed regression bug in htseq-count

Version 0.4.7

2010-12-22

• added new option -o (or --samout) to htseq-count

Patch versions:

• Version 0.4.7p1 (2011-02-14)

– bug fix: GFF files with empty attribute fiels are now read correctly

• Version 0.4.7p2 (2011-03-13)

– fixed assertion error in pair_SAM_alignment, triggered by incorrect flags

• Version 0.4.7p3 (2011-03-15)

– fixed problem due to SAM_Alignment.peek (by removing the method)

• Version 0.4.7p4 (2011-03-18)

– removed left-over debugging print statement

Version 0.4.6

2010-12-09

• pair_SAM_alignments now handles multiple matches properly

• SAM_Alignments now allows access to optional fields via the new methods optional_field and optional_fields

• htseq-count now skips reads that are non-uniquely mapped according to the ‘NH’ optional field

• updated documentation

Patch versions:

15.12. Version 0.4.7 83

HTSeq Documentation, Release 0.8.0

• Version 0.4.6p1 (2010-12-17)

– updated htseq-count documentation page

– htseq-count now accepts ‘-‘ as SAM file name

• Version 0.4.6p2 (2012-12-21)

– corrected a bug in htseq-count regarding the handling of warnings and added SAM_Reader.peek.

Version 0.4.5

2010-08-30

• correction to GenomicArray.get_steps() when called without arguments

• correction to FileOrSequence.get_line_number_string

• removed use of urllib’s quote and unquote in GFF parsing/writing

• GFF_Reader now stores “meta information”

• qa.py now gives progress report

• auto add chrom now also works on read access

• refactored CIGAR parser

• added bool fields to SAM_Alignment for all flag bits

Patch versions:

• Version 0.4.5p1 (2010-10-08)

– correction of a mistake in CIGAR checking, misreading symbol “N”

• Version 0.4.5p2 (2010-10-13)

– Sequence.add_bases_to_count_array and hence htseq-qa now accepts ‘.’ instead of ‘N’ in a fastq file

• Version 0.4.5p3 (2010-10-20)

– fixed error reporting for PE in htseq-count

• Version 0.4.5p4 (2010-10-21)

– fixed another error reporting for PE in htseq-count

• Version 0.4.5p5 (2010-10-28)

– Not only ‘N’ but also ‘S’ was read the wrong way. Fixed.

– Cython had some odd way handling properties overloading attributes, which caused issues with ‘Align-
ment.read’. Worked around.

• Version 0.4.5p6 (2010-11-02)

– write_to_fastq should not break lines. Fixed.

• Version 0.4.5p7 (2010-11-16)

– added fallback to distutils in case setuptools in unavailable

– fixed documentation of ‘-a’ option to htseq-count

84 Chapter 15. Version history

HTSeq Documentation, Release 0.8.0

Version 0.4.4

2010-05-19

• StepVectors (and hence also GenomicArrays) now notice if, when setting the value of a step, this value is equal
to an adjacent step and merge the steps.

• GenomicArray’s constructor now allows the special value "auto" for its first arguments in order to start with-
out chromosomes and automatically add them when first encountered.

Patch versions:

• Version 0.4.4p1 (2010-05-26):

– minor change to make it run on Python 2.5 again

– changed ‘str’ to ‘bytes’ at various places, now compiles with Cython 0.12 (but no longer with Cython 0.11
and Python 2.5)

• Version 0.4.4p2 (2010-06-05):

– change to SAM parser: if flag “query unmapped is set” but RNAME is not “*”, a warning (rather than an
error) is issued

• Version 0.4.4p3 (2010-06-25)

– again removed an “except sth as e”

• Version 0.4.4p4 (2010-07-12)

– dto.

• Version 0.4.4p5 (2010-07-13)

– rebuilt with Cython 0.12.1 (previous one was accidently built with Cython 0.11.1, causing it to fail with
Python 2.5)

• Version 0.4.4p6 (2010-07-21)

– fixed bug in error reporting in count.py

– losened GFF attribute parsing

– changed “mio” to “millions” in qa output

– improved error reporting in GFF parser

– made SAM parsing more tolerant

Version 0.4.3

2010-05-01

New argument to constructer of GFF_Reader: end_include

• Version 0.4.3-p1 (2010-05-04): version number was messed up; fixed

• Version 0.4.3-p2 (2010-05-15): fixed ‘-q’ option in htseq-count

• Version 0.4.3-p3 (2010-05-15): parse_GFF_attribute_string can now deal with empty fields; score treated as
float, not int

15.15. Version 0.4.4 85

HTSeq Documentation, Release 0.8.0

• Version 0.4.3-p3 (2010-05-15): - parse_GFF_attribute_string can now deal with empty fields; score treated as
float, not int - fixed bug in SAM_Reader: can now deal with SAM files with 11 columns - SAM_Alignment._tags
is now a list of strings

• Version 0.4.3-p4 (2010-05-16): bumped version number again just to make sure

Version 0.4.2

2010-04-19

Bug fixes to htseq-count and pair_SAM_alignments. Bumped version number to avoid confusion.

• Version 0.4.2-p1 (2010-04-20): there was still a bug left in htseq-count, fixed.

• Version 0.4.2-p2 (2010-04-26): bug fix: adapter trimming failed if the adapter was completely included in the
sequence

• Version 0.4.2-p3

• Version 0.4.2-p4 (2010-04-29): bug fix: error in warning when htseq-count encountered an unknown chromo-
some

• Version 0.4.2-p5 (2010-04-30): bug fixes: error in warning when PE positions are mismatched, and misleading
error when calling get_steps with unstranded interval in a stranded array

Version 0.4.1

2010-04-19

Bug fixes:

• Fixed bug in htseq-count: CIGAR strings with gaps were not correctly handled

• Fixed bug in Tour (last section, on counting): An wrong indent, and accidental change to the exons variable
invalidated data.

• SolexaExportReader no longer complains about multiplexing (indexing) not being supported.

• Mention link to example data in Tour.

• Fix installation instructions. (--user does not work for Python 2.5.)

Enhancements:

• Paired-end support for SAM_Alignment.

• “_as_pos” attributes for GenomicInterval

Version 0.4.0

2010-04-07

First “official” release, i.e., uploaded to PyPI and announced at SeqAnswers

86 Chapter 15. Version history

HTSeq Documentation, Release 0.8.0

Version 0.3.7

2010-03-12

First version that was uploaded to PyPI

15.20. Version 0.3.7 87

HTSeq Documentation, Release 0.8.0

88 Chapter 15. Version history

CHAPTER 16

Notes for Contributors

If you intend to contribute to the development of HTSeq, these notes will help you to get started.

Source code

The source code is on Github. To check out the repository, use

git clone https://github.com/simon-anders/htseq.git

Languages

HTSeq is mostly written in Python and is compatible with both Python 2.7 and Python 3.4 and above. However, the
codebases for Python 2/3 are separate and development happens mainly on the Python 3 branch.

A good part of HTSeq is actually not written in Python but in Cython. In case you don’t know it yet: Cython, a
fork from Pyrex, is a kind of Python compiler. You annotate Python code with additional type informations (the lines
starting with cdef in the source code). Cython will then transform the Cython source file (with extension pyx) into
a C file, which calls the appropriate funnctions of Python’s C API. Without type annotation, this looks and feels the
same as normal Python and is not really faster, either. With type annotation, significant performance gains are possible,
especially in inner loops.

A small part, namely the StepVector class, is written in C++ and exported with SWIG. (SWIG, the “Simple Wrapper
and Interface Generator” is a very useful tool to generate C/C++ code to wrap an existing C/C++ library such that it
becomes accessible as a native library within a number of scripting languages.) I am not so happy with this any more
(the abstraction panelty of the object-oriented SWIG wrapping turned out to be a bit high) and ultimatively want to
rewrite this part.

89

https://github.com/simon-anders/htseq
http://www.cython.org/
http://www.swig.org/

HTSeq Documentation, Release 0.8.0

Build process

HTSeq follows the standard python packaging guidelines and relies on a setup.py script that is simultaneously
compatible withPython 2 and 3. To build the code, run:

python setup.py build

and to install:

python setup.py install

If you are not modifying the low-level C/C++/Cython interfaces, you can do without Cython and SWIG. This is how
users normally install HTSeq using pip. If you do modify those files, the setup.py has a preprocessing step that
calls Cython and/or SWIG if these programs are found. You set the SWIG and CYTHON environment variables to point
to your executables if you have special requirements.

To test during development, HTSeq relies on Continuous Integration (CI), at the moment Travis CI is set up.

To build the documentation, Sphinx was used. Just go into the appropriate doc folder and call:

make html

to regenerate the documentation. Docs are stored on readthedocs.

Distributing

To wrap up a package, call:

python setup.py sdist

This makes a directory dists and in there, a tarball with all the source files (Python and C/C++). If you are a
maintainer of HTSeq, you can upload this file onto PyPI on the testing server. Then, you should run the Tracis CI tests
that try to install HTSeq directly from PyPI (without the source code). If all goes well, you can upload the tar file onto
the live PyPI server.

Files

The package contains source files for Python 2 and 3 in separate folders. Within each of those folders, the following
files are found:

HTSeq/__init__.py: The outer face of HTSeq. This file defines the name space of HTSeq and contains the
definition of all classes without performance-critical methods. The file imports _HTSeq in its own namespace,
so that, for the user, it does not matter whether an object is defined here or in _HTSeq.pyx.

src/HTSeq/_HTSeq.pyx: The core of HTSeq. All classes with perfomance-critical methods are defined here.
For most of it, this file looks as a normal Python file. Only where performance is critical, type annotation has
been added. See the Cython manual for details.

src/HTSeq/_HTSeq.pxd: The “header file” for _HTSeq.pyx. It contains the type annotation for all the fields
of the classes defined in _HTSeq.pyx. If a user would want to write her own Cython code, she could use
Cython’s cimport directive to import this header file and so make Cython aware of the typed definitions of
fields and methods in _HTSeq.pyx, which may improve performance because it allows Cython to kick out all
unnecessary type checking.

90 Chapter 16. Notes for Contributors

http://www.sphinx-doc.org/
https://readthedocs.org/

HTSeq Documentation, Release 0.8.0

HTSeq/_HTSeq_internal.py: There are a few limitation to the standard Python code allowed in Cython files;
most importantly, the yield statement is not yet supported. Hence, _HTSeq.pyx imports this file, and
whenever a method in _HTSeq.pyx needs a yield, it calls a function which is put in here.

src/step_vector.h: The C++ step_vector class template. As this is a pure template, there is no
step_vector.cc file with definitions. If you want to use a step_vector in a C++ project, this is all
you need.

src/StepVector.i: An input file to SWIG, which produces the Python wrapper around step_vector.h, i.e.,
the StepVector module containing the StepVector class. Note that this file contains not only SWIG
directives but also Python and come C++ code.

src/AutoPyObjPtr.i: A very small SWIG library that allows SWIG-wrapped C++ container classes to store
Python objects in a way that Python’s garbage collector is happy with.

HTSeq/scripts/count.py and HTSeq/scripts/qa.py: The source code for the stand-alone scripts
htseq-count and htseq-qa. They reside in the sub-package HTSeq.scripts, allowing to call the
scripts with, e.g., python -m HTSeq.scripts.qa.

scripts/htseq-count and scripts/htseq-qa: Short stubs to call the scripts from the command line sim-
ply as, e.g., htseq-qa.

doc/: this documentation, in Sphinx reStructuredText format, and a Makefile to drive Sphinx.

test/test.py Performs all the deoctests in the documentation, using the example data in the example_data
directory.

Furthermore, there are these files to support development:

setup.py: A typical setuptools setup.py file.

Finally, there are these files

VERSION: a one-line text-fil with the version number. It is read by setup.py, used by build_it to generate the
one-line Python file HTSeq/_version.py and also used when building the documentation.

MANIFEST.in: Brings some files to the attention of setup.py sdist which would otherwise not be included

LICENCE: The GPL, v3

README.md: Points the user to the web site.

and these directories

example_files/: a few example files to be use by the doctests in the documentation.

• genindex

16.5. Files 91

HTSeq Documentation, Release 0.8.0

92 Chapter 16. Notes for Contributors

Index

Symbols
–additional-attr=<id attributes>

htseq-count command line option, 76
–max-reads-in-buffer=<number>

htseq-count command line option, 75
–nonunique=<nonunique mode>

htseq-count command line option, 76
-a <minaqual>, –a=<minaqual>

htseq-count command line option, 76
-f <format>, –format=<format>

htseq-count command line option, 75
-g <gamma>, –gamma=<gamma>

htseq-qa command line option, 71
-h, –help

htseq-count command line option, 76
htseq-qa command line option, 71

-i <id attribute>, –idattr=<id attribute>
htseq-count command line option, 76

-m <mode>, –mode=<mode>
htseq-count command line option, 76

-m, –maxqual
htseq-qa command line option, 71

-n, –nosplit
htseq-qa command line option, 71

-o <outfile>, –outfile=<outfile>
htseq-qa command line option, 71

-o <samout>, –samout=<samout>
htseq-count command line option, 76

-q, –quiet
htseq-count command line option, 76

-r <order>, –order=<order>
htseq-count command line option, 75

-r <readlen>, –readlength=<readlen>
htseq-qa command line option, 71

-s <yes/no/reverse>, –stranded=<yes/no/reverse>
htseq-count command line option, 75

-t <feature type>, –type=<feature type>
htseq-count command line option, 76

-t <type>, –type=<type>

htseq-qa command line option, 71
__version__ (in module HTSeq), 67

A
add_chrom() (HTSeq.GenomicArray method), 51
aligned (HTSeq.Alignment attribute), 54
Alignment (class in HTSeq), 54
AlignmentWithSequenceReversal (class in HTSeq), 54
alt (HTSeq.VariantCall attribute), 64
apply() (HTSeq.ChromVector method), 51
aQual (HTSeq.SAM_Alignment attribute), 55
attr (HTSeq.GenomicFeature attribute), 60
auto_add_chroms (HTSeq.GenomicArray attribute), 50

B
BAM_Reader (class in HTSeq), 54
BED_Reader (class in HTSeq), 65
BowtieAlignment (class in HTSeq), 55
BowtieReader (class in HTSeq), 54
bundle_multiple_alignments() (in module HTSeq), 57

C
check() (HTSeq.CigarOperation method), 58
chrom (HTSeq.GenomicInterval attribute), 47
chrom (HTSeq.VariantCall attribute), 64
chrom_vectors (HTSeq.GenomicArray attribute), 50
cigar (HTSeq.SAM_Alignment attribute), 55
CigarOperation (class in HTSeq), 57
contains() (HTSeq.GenomicInterval method), 48

D
descr (HTSeq.Sequence attribute), 41

E
end (HTSeq.GenomicInterval attribute), 47
end_as_pos (HTSeq.GenomicInterval attribute), 48
end_d (HTSeq.GenomicInterval attribute), 48
end_d_as_pos (HTSeq.GenomicInterval attribute), 48

93

HTSeq Documentation, Release 0.8.0

extend_to_include() (HTSeq.GenomicInterval method),
48

F
failed_platform_qc (HTSeq.SAM_Alignment attribute),

55
FastaReader (class in HTSeq), 45
FastqReader (class in HTSeq), 46
FileOrSequence (class in HTSeq), 67
filter (HTSeq.VariantCall attribute), 64
format (HTSeq.VariantCall attribute), 64
fos (HTSeq.FileOrSequence attribute), 67
frame (HTSeq.GenomicFeature attribute), 60

G
GenomicArray (class in HTSeq), 49
GenomicArrayOfSets (class in HTSeq), 52
GenomicFeature (class in HTSeq), 60
GenomicInterval (class in HTSeq), 47
GenomicInterval_from_directional() (in module HTSeq),

48
GenomicPosition (class in HTSeq), 49
get_gff_line() (HTSeq.GenomicFeature method), 61
get_line_number_string() (HTSeq.FileOrSequence

method), 67
get_reverse_complement() (HTSeq.Sequence method),

42
get_sam_line() (HTSeq.SAM_Alignment method), 56
GFF_Reader (class in HTSeq), 60

H
htseq-count command line option

–additional-attr=<id attributes>, 76
–max-reads-in-buffer=<number>, 75
–nonunique=<nonunique mode>, 76
-a <minaqual>, –a=<minaqual>, 76
-f <format>, –format=<format>, 75
-h, –help, 76
-i <id attribute>, –idattr=<id attribute>, 76
-m <mode>, –mode=<mode>, 76
-o <samout>, –samout=<samout>, 76
-q, –quiet, 76
-r <order>, –order=<order>, 75
-s <yes/no/reverse>, –stranded=<yes/no/reverse>,

75
-t <feature type>, –type=<feature type>, 76

htseq-qa command line option
-g <gamma>, –gamma=<gamma>, 71
-h, –help, 71
-m, –maxqual, 71
-n, –nosplit, 71
-o <outfile>, –outfile=<outfile>, 71
-r <readlen>, –readlength=<readlen>, 71
-t <type>, –type=<type>, 71

I
id (HTSeq.VariantCall attribute), 64
inferred_insert_size (HTSeq.SAM_Alignment attribute),

56
info (HTSeq.VariantCall attribute), 64
interval (HTSeq.GenomicFeature attribute), 60
is_contained_in() (HTSeq.GenomicInterval method), 48
iv (HTSeq.Alignment attribute), 54

L
length (HTSeq.GenomicInterval attribute), 48
line_no (HTSeq.FileOrSequence attribute), 67

M
mate_aligned (HTSeq.SAM_Alignment attribute), 56
mate_start (HTSeq.SAM_Alignment attribute), 56
metadata (HTSeq.GFF_Reader attribute), 60
metadata (HTSeq.VCF_Reader attribute), 63

N
name (HTSeq.GenomicFeature attribute), 60
name (HTSeq.Sequence attribute), 41
nomatch_code (HTSeq.SolexaExportAlignment at-

tribute), 57
not_primary_alignment (HTSeq.SAM_Alignment at-

tribute), 55

O
optional_field (HTSeq.SAM_Alignment attribute), 56
optional_fields (HTSeq.SAM_Alignment attribute), 56
overlaps() (HTSeq.GenomicInterval method), 48

P
pair_SAM_alignments() (in module HTSeq), 56
pair_SAM_alignments_with_buffer() (in module HT-

Seq), 56
paired_end (HTSeq.Alignment attribute), 54
parse_GFF_attribute_string() (in module HTSeq), 61
passed_filter (HTSeq.SolexaExportAlignment attribute),

57
pcr_or_optical_duplicate (HTSeq.SAM_Alignment at-

tribute), 55
pe_which (HTSeq.SAM_Alignment attribute), 56
pos (HTSeq.VariantCall attribute), 64
pos (in module HTSeq), 49
proper_pair (HTSeq.SAM_Alignment attribute), 56

Q
qual (HTSeq.SequenceWithQuality attribute), 44
qual (HTSeq.VariantCall attribute), 64
qualstr (HTSeq.SequenceWithQuality attribute), 44
query_from (HTSeq.CigarOperation attribute), 58
query_to (HTSeq.CigarOperation attribute), 58

94 Index

HTSeq Documentation, Release 0.8.0

R
read (HTSeq.Alignment attribute), 54
read_as_aligned (HTSeq.AlignmentWithSequenceReversal

attribute), 55
read_as_sequenced (HT-

Seq.AlignmentWithSequenceReversal at-
tribute), 55

ref (HTSeq.VariantCall attribute), 64
ref_iv (HTSeq.CigarOperation attribute), 58
reserved (HTSeq.BowtieAlignment attribute), 55

S
SAM_Alignment (class in HTSeq), 55
SAM_Reader (class in HTSeq), 54
samples (HTSeq.VariantCall attribute), 64
score (HTSeq.GenomicFeature attribute), 60
seq (HTSeq.Sequence attribute), 41
Sequence (class in HTSeq), 41
SequenceWithQualities (class in HTSeq), 44
size (HTSeq.CigarOperation attribute), 58
SolexaExportAlignment (class in HTSeq), 57
SolexaExportReader (class in HTSeq), 54
source (HTSeq.GenomicFeature attribute), 60
start (HTSeq.GenomicInterval attribute), 47
start_as_pos (HTSeq.GenomicInterval attribute), 48
start_d (HTSeq.GenomicInterval attribute), 47
start_d_as_pos (HTSeq.GenomicInterval attribute), 48
steps() (HTSeq.ChromVector method), 50
steps() (HTSeq.GenomicArray method), 51
strand (HTSeq.GenomicInterval attribute), 47
stranded (HTSeq.GenomicArray attribute), 50
substitutions (HTSeq.BowtieAlignment attribute), 55
supplementary (HTSeq.SAM_Alignment attribute), 55

T
trim_left_end() (HTSeq.Sequence method), 43
trim_left_end_with_quals() (HT-

Seq.SequenceWithQualities method), 45
trim_right_end() (HTSeq.Sequence method), 43
trim_right_end_with_quals() (HT-

Seq.SequenceWithQualities method), 45
type (HTSeq.CigarOperation attribute), 57
type (HTSeq.GenomicFeature attribute), 60
typecode (HTSeq.GenomicArray attribute), 50

V
VariantCall (class in HTSeq), 63
VariantCall.unpack_info() (in module HTSeq), 64
VCF_Reader (class in HTSeq), 63
VCF_Reader.make_info_dict() (in module HTSeq), 63
VCF_Reader.parse_meta() (in module HTSeq), 63

W
WiggleReader (class in HTSeq), 65

write_bedgraph_file() (HTSeq.GenomicArray method),
51

write_to_fastq_file() (HTSeq.SequenceWithQuality
method), 45

X
xrange() (HTSeq.GenomicInterval method), 48
xrange_d() (HTSeq.GenomicInterval method), 48

Index 95

	HTSeq: Analysing high-throughput sequencing data with Python
	Paper
	Documentation overview
	Author
	License

	Prequisites and installation
	Installation on Linux
	Installation on MacOS X
	MS Windows

	A tour through HTSeq
	Reading in reads
	Reading and writing BAM files
	Genomic intervals and genomic arrays
	Counting reads by genes
	And much more

	A detailed use case: TSS plots
	Using the full coverage
	Using indexed BAM files
	Streaming through all reads

	Counting reads
	Preparing the feature array
	Counting ungapped single-end reads
	Counting gapped single-end reads

	Reference overview
	Parser and record classes
	Specifying genomic positions and intervals
	Genomic arrays
	Special features for SAM/BAM files

	Sequences and FASTA/FASTQ files
	Sequence
	SequenceWithQualities
	FastaReader
	FastqReader

	Genomic intervals and genomic arrays
	GenomicInterval
	GenomicPosition
	GenomicArray
	GenomicArrayOfSets

	Read alignments
	Concepts
	Parser classes
	Alignment and AlignmentWithSequenceReversal
	Format-specific Alignment classes
	Multiple alignments
	CIGAR strings

	Features
	GFF_Reader and GenomicFeature

	Other parsers
	VCF_Reader and VariantCall
	Wiggle Reader
	BED Reader

	Miscellaneous
	FileOrSequence
	Version

	Quality Assessment with htseq-qa
	Plot
	Usage

	Counting reads in features with htseq-count
	Usage

	Version history
	Version 0.8.0
	Version 0.7.2
	Version 0.7.1
	Version 0.7.0
	Version 0.6.1
	Version 0.6.0
	Version 0.5.4
	Version 0.5.3
	Version 0.5.2
	Version 0.5.1
	Version 0.5.0
	Version 0.4.7
	Version 0.4.6
	Version 0.4.5
	Version 0.4.4
	Version 0.4.3
	Version 0.4.2
	Version 0.4.1
	Version 0.4.0
	Version 0.3.7

	Notes for Contributors
	Source code
	Languages
	Build process
	Distributing
	Files

