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HTSeq: Analysing high-throughput sequencing data with Python

HTSeq is a Python package that provides infrastructure to process data
from high-throughput sequencing assays.


	Please see the chapter A tour through HTSeq first for an overview on the kind of analysis
you can do with HTSeq and the design of the package, and then look at the reference
documentation.




	While the main purpose of HTSeq is to allow you to write your own analysis scripts,
customized to your needs, there are also a couple of stand-alone scripts for
common tasks that can be used without any Python knowledge. See the Scripts
section in the overview below for what is available.




	For downloads and installation instructions, see Prequisites and installation.




Paper

HTSeq is described in the following publication:



Simon Anders, Paul Theodor Pyl, Wolfgang Huber

HTSeq — A Python framework to work with high-throughput sequencing data

Bioinformatics (2014), in print, online at doi:10.1093/bioinformatics/btu638 [https://doi.org/10.1093/bioinformatics/btu638]






If you use HTSeq in research, please cite this paper in your publication.




Documentation overview


	Prequisites and installation

Download links and installation instructions can be found here



	A tour through HTSeq

The Tour shows you how to get started. It explains how to install HTSeq, and then
demonstrates typical analysis steps with explicit examples. Read this first, and
then see the Reference for details.



	A detailed use case: TSS plots

This chapter explains typical usage patterns for HTSeq by explaining in detail
three different solutions to the same programming task.



	Counting reads

This chapter explorer in detail the use case of counting the overlap of reads
with annotation features and explains how to implement custom logic by
writing on’s own customized counting scripts



	Reference documentation

The various classes of HTSeq are described here.


	Reference overview

A brief overview over all classes.



	Sequences and FASTA/FASTQ files

In order to represent sequences and reads (i.e., sequences with base-call quality
information), the classes Sequence and SequenceWithQualities are used.
The classes FastaReader and FastqReader allow to parse FASTA and FASTQ
files.



	Genomic intervals and genomic arrays

The classes GenomicInterval and GenomicPosition represent intervals and
positions in a genome. The class GenomicArray is an all-purpose container
with easy access via a genomic interval or position, and GenomicArrayOfSets
is a special case useful to deal with genomic features (such as genes, exons,
etc.)



	Read alignments

To process the output from short read aligners in various formats (e.g., SAM),
the classes described here are used, to represent output files and alignments,
i.e., reads with their alignment information.



	Features

The classes GenomicFeature and GFF_Reader help to deal with genomic
annotation data.



	Other parsers

This page describes classes to parse VCF, Wiggle and BED files.



	Miscellaneous







	Scripts

The following scripts can be used without any Python knowledge.


	Quality Assessment with htseq-qa

Given a FASTQ or SAM file, this script produces a PDF file with plots depicting
the base calls and base-call qualities by position in the read. This is useful to
assess the technical quality of a sequencing run.



	Counting reads in features with htseq-count

Given a SAM file with alignments and a GFF file with genomic features, this script
counts how many reads map to each feature.







	Appendices







	Version history
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Author

HTSeq is developed by Simon Anders [http://www.embl.de/research/units/genome_biology/huber/members/index.php?s_personId=6001] at EMBL Heidelberg [http://www.embl.de/] (Genome Biology
Unit [http://www.embl.de/research/units/genome_biology/index.html]). Please do not hesitate to contact me (anders at embl dot de) if you
have any comments or questions.




License

HTSeq is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

The full text of the GNU General Public License, version 3, can be found
here: http://www.gnu.org/licenses/gpl-3.0-standalone.html







          

      

      

    

  

    
      
          
            
  
Prequisites and installation

HTSeq is available from the Python Package Index (PyPI) [http://pypi.python.org/pypi/HTSeq]:

To use HTSeq, you need Python [http://www.python.org/] 2.7 or 3.4 or above (3.0-3.3 are not supported),
together with:


	NumPy [http://numpy.scipy.org/], a commonly used Python package for numerical calculations

	Pysam [https://github.com/pysam-developers/pysam], a Python interface to samtools [http://www.htslib.org/].

	To make plots you will need matplotlib [http://matplotlib.org/], a plotting library.



At the moment, HTSeq supports Linux and OSX but not Windows operating systems,
because one of the key dependencies, Pysam [https://github.com/pysam-developers/pysam], lacks automatic support and none
of the HTSeq authors have access to such a machine. However, it might work
with some work, if you need support for this open an issue on our Github [https://github.com/simon-anders/htseq] page.

HTSeq follows install conventions of many Python packages. In the best case, it
should install from PyPI like this:

pip install HTSeq





If this does not work, please open an issue on Github [https://github.com/simon-anders/htseq] and also try the instructions
below.


Installation on Linux

You can choose to install HTSeq via your distribution packages or via pip. The former
is generally recommended but might be updated less often than the pip version.


Distribution package manager


	Ubuntu (e.g. for Python 2.7):

sudo apt-get install build-essential python2.7-dev python-numpy python-matplotlib python-pysam python-htseq







	Arch (e.g. using aura, you can grab the AUR packages otherwise):

sudo pacman -S python python-numpy python-matplotlib
sudo aura -A python-pysam python-htseq












PIP

PIP should take care of the requirements for you:

pip install HTSeq








Installing from GIT

If you want to install a development version, just clone the git repository, switch to the branch/commit
you wish, and use setuptools:

python setup.py build
python setup.py install





Typical setuptools options are available (e.g. --prefix, --user).

To test the installation, change to another director than the build directory, start Python
(by typing python or python2.7) and then try whether typing import HTSeq causes an error meesage.






Installation on MacOS X

Mac users should install NumPy as explained here [http://www.scipy.org/Installing_SciPy/Mac_OS_X] in the NumPy/SciPy documentation. Note that you need
to install Xcode to be able to compile NumPy. Due to the
mess that Apple recently made out of Xcode, the whole process may be a slight bit more cumbersome than necessary, especially if you work with OSX Lion, so read the instructions carefully.

If you want to produce plots or use htseq-qa, you will also need matplotlib. (For htseq-count, it
is not required.) There seems to be a binary package (a “Python egg”) available on the matplotlib
SourceForge page.

To install HTSeq itself, download the source package from the HTSeq PyPI page [http://pypi.python.org/pypi/HTSeq], unpack the tarball,
go into the directory with the unpacked files and type there:

python setup.py build





to compile HTSeq. If you get an error regarding the availability of a C compiler, you may need to
set environment variables to point Python to the . The NumPy/SciPy installation instructions above cover this topic well and
apply here, too, so simply do the same as you did to install NumPy.

Once building has been successful, use:

python setup.py --user





to install HTSeq for the current users. To make HTSeq available to all users, use instead:

python setup.py build
sudo python setup.py install





To test the installation, change to another director than the build directory, start Python
(by typing python) and then try whether typing import HTSeq causes an error meesage.




MS Windows

If you have not yet installed Python, do so first. You can find an automatic installer
for Windows on
the Python download page [http://www.python.org/getit/]. Make sure to use Python 2.7, not Python 3.3.

Then install the newest version of NumPy. Look on NumPy’s PyPI page [https://pypi.python.org/pypi/numpy] for the automatic installer.

If you want to produce plots or use htseq-qa, you will also need matplotlib. (For htseq-count, it
is not required.) Follow the installation instructions on their web page.

To install HTSeq itself, simply download the Windows installer from the HTSeq download page [http://pypi.python.org/pypi/HTSeq]
and run it.

To test your installation, start Python and then try whether typing import HTSeq
causes an error meesage.

If you get the error message “ImportError: DLL load failed”, you are most likely
missing the file MSVCR110.DLL on your system, which you can get by downloading and
installing the file “vcredist_x86.exe” from this page [http://www.microsoft.com/en-us/download/details.aspx?id=30679].







          

      

      

    

  

    
      
          
            
  
A tour through HTSeq

In the analysis of high-throughput sequencing data, it is often necessary to
write custom scripts to form the “glue” between tools or to perform specific
analysis tasks. HTSeq is a Python package to facilitate this.

This tour demonstrates the
functionality of HTSeq by performing a number of common analysis tasks:


	Getting statistical summaries about the base-call quality scores to
study the data quality.

	Calculating a coverage vector and exporting it for visualization in
a genome browser.

	Reading in annotation data from a GFF file.

	Assigning aligned reads from an RNA-Seq experiments to exons and
genes.



The following description assumes that the reader is familiar with Python and with HTS
data. (For a good and not too lengthy introduction to Python, read the Python Tutorial
on the Python web site.)

If you want to try out the examples on your own system, you can download the
example files used from here: HTSeq_example_data.tgz [http://www-huber.embl.de/users/anders/HTSeq/HTSeq_example_data.tgz]


Reading in reads

In the example data, a FASTQ file is provided with example reads from a yeast RNA-Seq
experiment. The file yeast_RNASeq_excerpt_sequence.txt is an excerpt of the
_sequence.txt file produced by the SolexaPipeline software. We can access it from
HTSeq with

>>> import HTSeq
>>> fastq_file = HTSeq.FastqReader( "yeast_RNASeq_excerpt_sequence.txt", "solexa" )





The first argument is the file name. The optional second argument indicates
the encoding for the quality string. If you omit, the default (“phred”) is used. The
example data, however, is from an older experiment, and hence encoded in the
offset-64 format that the Solexa/Illumina software pipeline used before
version 1.8. (A third option is “solexa_old”, for data from the Solexa pipeline
prior to version 1.3.)

The variable fastq_file is now an object of class FastqReader, which
refers to the file:

>>> fastq_file
<FastqReader object, connected to file name 'yeast_RNASeq_excerpt_sequence.txt'>





When used in a for loop, it generates an iterator of objects representing the
reads. Here, we use the islice function from itertools to cut after 10
reads.

>>> import itertools
>>> for read in itertools.islice( fastq_file, 10 ):
...    print(read)
CTTACGTTTTCTGTATCAATACTCGATTTATCATCT
AATTGGTTTCCCCGCCGAGACCGTACACTACCAGCC
TTTGGACTTGATTGTTGACGCTATCAAGGCTGCTGG
ATCTCATATACAATGTCTATCCCAGAAACTCAAAAA
AAAGTTCGAATTAGGCCGTCAACCAGCCAACACCAA
GGAGCAAATTGCCAACAAGGAAAGGCAATATAACGA
AGACAAGCTGCTGCTTCTGTTGTTCCATCTGCTTCC
AAGAGGTTTGAGATCTTTGACCACCGTCTGGGCTGA
GTCATCACTATCAGAGAAGGTAGAACATTGGAAGAT
ACTTTTAAAGATTGGCCAAGAATTGGGGATTGAAGA





Of course, there is more to a read than its sequence. The variable read still
contains the tenth read, and we can examine it:

>>> read
<SequenceWithQualities object 'HWI-EAS225:1:10:1284:142#0/1'>





A Sequence object has two slots, called seq and
name. This object is a SequenceWithQualities,
and it also has a slot qual:

>>> read.name
'HWI-EAS225:1:10:1284:142#0/1'
>>> read.seq
b'ACTTTTAAAGATTGGCCAAGAATTGGGGATTGAAGA'
>>> read.qual
array([33, 33, 33, 33, 33, 33, 29, 27, 29, 32, 29, 30, 30, 21, 22, 25, 25,
       25, 23, 28, 24, 24, 29, 29, 29, 25, 28, 24, 24, 26, 25, 25, 24, 24,
       24, 24], dtype=uint8)





The values in the quality array are, for each base in the sequence, the Phred
score for the correctness of the base.

As a first simple example for the use of HTSeq, we now calculate the average
quality score for each position in the reads by adding up the qual arrays
from all reads and the dividing by the number of reads. We sum everything up in
the variable qualsum, a numpy array of integers:

>>> import numpy
>>> len( read )
36
>>> qualsum = numpy.zeros( len(read), numpy.int )





Then we loop through the fastq file, adding up the quality scores and
counting the reads:

>>> nreads = 0
>>> for read in fastq_file:
...    qualsum += read.qual
...    nreads += 1





The average qualities are hence:

>>> qualsum / float(nreads)
array([ 31.56838274,  30.08288332,  29.4375375 ,  29.00432017,
        28.55290212,  28.26825073,  28.46681867,  27.59082363,
        27.34097364,  27.57330293,  27.11784471,  27.19432777,
        26.84023361,  26.76267051,  26.44885795,  26.79135165,
        26.42901716,  26.49849994,  26.13604544,  25.95823833,
        25.54922197,  26.20460818,  25.42333693,  25.72298892,
        25.04164167,  24.75151006,  24.48561942,  24.27061082,
        24.10720429,  23.68026721,  23.52034081,  23.49437978,
        23.11076443,  22.5576223 ,  22.43549742,  22.62354494])





If you have matplotlib [http://matplotlib.sourceforge.net/] installed, you can plot these numbers.

>>> from matplotlib import pyplot      
>>> pyplot.plot( qualsum / nreads )    
>>> pyplot.show()                      





[image: _images/qualplot.png]
This is a very simple way of looking at the quality scores. For more sophisticated
quality-control techniques, see the Chapter Quality Assessment with htseq-qa.

Instead of a FASTQ file, you might have a SAM file, with the reads already aligned.
The SAM_Reader class can read such data.

>>> alignment_file = HTSeq.SAM_Reader( "yeast_RNASeq_excerpt.sam" )





If we are only interested in the qualities, we can rewrite the commands from above
to use the alignment_file:

>>> nreads = 0
>>> for aln in alignment_file:
...    qualsum += aln.read.qual
...    nreads += 1





We have simple replaced the FastqReader with a SolexaExportReader, which
iterates, when used in a for loop, over SolexaExportAlignment objects. Each of
these contain a field read that contains the SequenceWithQualities
object, as before. There are more parses, for example the SAM_Reader that can read SAM
files, and generates SAM_Alignment objects. As all Alignment objects
contain a read slot with the SequenceWithQualities, we can use the same
code with any alignment file for which a parser has been provided, and all we have
to change is the name of the reader class in the first line.

The other fields that all Alignment objects contain, is a Boolean called
aligned that tells us whether the read has been aligned
at all, and a field called iv
(for “interval”) that shows where the read was aligned to. We use this information in
the next section.




Reading and writing BAM files

HTSeq exposes the samtools API trough pysam, enabling you to read and write BAM files.
A simple example of the usage is given here:

>>> bam_reader = HTSeq.BAM_Reader( "SRR001432_head_sorted.bam" )
>>> for a in itertools.islice( bam_reader, 5 ):  # printing first 5 reads
...    print(a)
<SAM_Alignment object: Read 'SRR001432.165255 USI-EAS21_0008_3445:8:4:718:439 length=25' aligned to 1:[29267,29292)/->
<SAM_Alignment object: Read 'SRR001432.238475 USI-EAS21_0008_3445:8:6:888:446 length=25' aligned to 1:[62943,62968)/->
<SAM_Alignment object: Read 'SRR001432.116075 USI-EAS21_0008_3445:8:3:657:64 length=25' aligned to 1:[86980,87005)/->
<SAM_Alignment object: Read 'SRR001432.159692 USI-EAS21_0008_3445:8:4:618:821 length=25' aligned to 1:[91360,91385)/->
<SAM_Alignment object: Read 'SRR001432.249247 USI-EAS21_0008_3445:8:6:144:741 length=25' aligned to 1:[97059,97084)/->





>>> bam_writer = HTSeq.BAM_Writer.from_BAM_Reader( "region.bam", bam_reader ) #set-up BAM_Writer with same header as reader
>>> for a in bam_reader.fetch( region = "1:249000000-249200000" ): #fetching reads in a region
...    print("Writing Alignment", a, "to file", bam_writer.filename)
...    bam_writer.write( a )    
Writing Alignment <SAM_Alignment object: Read 'SRR001432.104735 USI-EAS21_0008_3445:8:3:934:653 length=25' aligned to 1:[249085369,249085394)/-> to file region.bam
Writing Alignment <SAM_Alignment object: Read 'SRR001432.280764 USI-EAS21_0008_3445:8:7:479:581 length=25' aligned to 1:[249105864,249105889)/-> to file region.bam
...
Writing Alignment <SAM_Alignment object: Read 'SRR001432.248967 USI-EAS21_0008_3445:8:6:862:756 length=25' aligned to 1:[249167916,249167941)/-> to file region.bam
>>> bam_writer.close()








Genomic intervals and genomic arrays


Genomic intervals

At the end of the previous section, we looped through a SAM file. In the for loop,
the SAM_Reader object yields for each alignment line in the SAM file an
object of class SAM_Alignment. Let’s have closer look at such an object,
still found in the variable aln:

>>> aln
<SAM_Alignment object: Read 'HWI-EAS225:1:11:76:63#0/1' aligned to IV:[246048,246084)/+>





Every alignment object has a slot read, that contains a SequenceWithQualities object as
described above

>>> aln.read
<SequenceWithQualities object 'HWI-EAS225:1:11:76:63#0/1'>
>>> aln.read.name
'HWI-EAS225:1:11:76:63#0/1'
>>> aln.read.seq
b'ACTGTAAATACTTTTCAGAAGAGATTTGTAGAATCC'
>>> aln.read.qualstr
b'BBBB@B?AB?>BAAA@A@>=?=?9=?=;9>988<::'
>>> aln.read.qual
array([33, 33, 33, 33, 31, 33, 30, 32, 33, 30, 29, 33, 32, 32, 32, 31, 32,
       31, 29, 28, 30, 28, 30, 24, 28, 30, 28, 26, 24, 29, 24, 23, 23, 27,
       25, 25], dtype=uint8)





Furthermore, every alignment object has a slot iv (for “interval”) that describes where
the read was aligned to (if it was aligned). To hold this
information, an object of class GenomicInterval
is used that has slots as follows:

>>> aln.iv
<GenomicInterval object 'IV', [246048,246084), strand '+'>
>>> aln.iv.chrom
'IV'
>>> aln.iv.start
246048
>>> aln.iv.end
246084
>>> aln.iv.strand
'+'





Note that all coordinates in HTSeq are zero-based (following Python convention), i.e.
the first base of a chromosome has index 0. Also, all intervals are half-open, i.e.,
the end position is not included. The strand can be one of '+', '-',
and '.', where the latter indicates that the strand is not defined or not of interest.

Apart from these slots,
a GenomicInterval object has a number of convenience functions, see the reference.

Note that a SAM file may contain reads that could not be aligned. For these, the
iv slot contains None. To test whether an alignment is present, you can also
query the slot aligned, which is a Boolean.




Genomic Arrays

The GenomicArray data structure is a convenient way to store and
retrieve information associated with a genomic position or genomic interval. In
a GenomicArray, data (either simple scalar data like a number) or can be stored
at a place identified by a GenomicInterval. We demonstrate with a toy example.

Assume you have a genome with three chromosomes with the following lengths (in bp):

>>> chromlens = { 'chr1': 3000, 'chr2': 2000, 'chr1': 1000 }





We wish to store integer data (typecode “i”)

>>> ga = HTSeq.GenomicArray( chromlens, stranded=False, typecode="i" )





Now, we can assign the value 5 to an interval:

>>> iv = HTSeq.GenomicInterval( "chr1", 100, 120, "." )
>>> ga[iv] = 5





We may want to add the value 3 to an interval overlapping with the previous one:

>>> iv = HTSeq.GenomicInterval( "chr1", 110, 135, "." )
>>> ga[iv] += 3





To see the effect of this, we read out an interval encompassing the region that
we changed. To display the data, we convert to a list:

>>> iv = HTSeq.GenomicInterval( "chr1", 90, 140, "." )
>>> list( ga[iv] )  
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 8, 8, 8,
 8, 8, 8, 8, 8, 8, 8, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0,
 0, 0, 0, 0]





It would be wasteful to store all these repeats of the same value as it
is displayed here. Hence, GenomicArray objects use by default so-called
StepVectors that store the data internally in “steps” of constant value.
Often, reading out the data that way is useful, too:

>>> for iv2, value in ga[iv].steps():
...    print(iv2, value)
...
chr1:[90,100)/. 0
chr1:[100,110)/. 5
chr1:[110,120)/. 8
chr1:[120,135)/. 3
chr1:[135,140)/. 0





If the steps become very small, storing them instead of just the unrolled data may
become inefficient. In this case, GenomicArrays should be instantiated with
storage mode ndarray to get a normal numpy array as backend, or with storage
mode memmap to use a file/memory-mapped numpy array (see reference for details).

In the following section, we demonstrate how a GenomicArray can be used to
calculate a coverage vector. In the section after that, we see how a GenomicArray
with type code ‘O’ (which stands for ‘object’, i.e., any kind of data, not just
numbers) is useful to organize metadata.




Calculating coverage vectors

By a “coverage vector”, we mean a vector (one-dimensional array) of the length of
a chromosome, where each element counts how many reads cover the corresponding
base pair in their alignment. A GenomicArray can conveniently bundle the
coverage vectors for all the chromosomes in a genome.

Hence, we start by defining a GenomicArray:

>>> cvg = HTSeq.GenomicArray( "auto", stranded=True, typecode="i" )





Instead of listing all chromosomes, we instruct the GenomicArray to add chromosome
vectors as needed, by specifiyng "auto". As we set stranded=True, there are now two
chromosome vectors for each
chromosome, all holding integer values (typecode="i"). They all have an
“infinte” length as we did not specify the actual lengths of the chromosomes.

To build the coverage vectors, we now simply iterate
through all the reads and add the value 1 at the interval to which each read was aligned
to:

>>> alignment_file = HTSeq.SAM_Reader( "yeast_RNASeq_excerpt.sam" )
>>> cvg = HTSeq.GenomicArray( "auto", stranded=True, typecode='i' )
>>> for alngt in alignment_file:
...    if alngt.aligned:
...       cvg[ alngt.iv ] += 1





We can plot an excerpt of this with:

>>> pyplot.plot( list( cvg[ HTSeq.GenomicInterval( "III", 200000, 500000, "+" ) ] ) )     





However, a proper genome browser gives a better impression of the data. The following commands
write two BedGraph (Wiggle) files, one for the plus and one for the minus strands:

>>> cvg.write_bedgraph_file( "plus.wig", "+" )
>>> cvg.write_bedgraph_file( "minus.wig", "-" )





These two files can then be viewed in a genome browser (e.g. IGB [http://igb.bioviz.org/] or IGV [http://www.broadinstitute.org/igv/]), alongside the
annotation from a GFF file (see below).




GenomicArrayOfSets

Another use of genomic arrays is to store annotation data. In the next section, we will use this
to store the position of all exons of the yeast genome in a genomic array and then go through
all our reads, querying the array for each read to report the exons overlapped by this read.

In principle, we could use a genomic array with type code ‘O’ (for object), which can store arbitrary
Python objects. However, there might be positions in the genome that are covered by more than one
gene, and hence, we better use a data structure that can accommodate overlapping features.

The class:GenomicArrayOfSets is meant for this purpose. For each step, it stores a set of objects. To
illustrate this, we initialize a GenomicArrayOfSets and then store three features in it:

>>> gas = HTSeq.GenomicArrayOfSets( "auto", stranded=False )
>>> gas[ HTSeq.GenomicInterval( "chr1", 100, 250 ) ] += "A"
>>> gas[ HTSeq.GenomicInterval( "chr1", 360, 640 ) ] += "A"
>>> gas[ HTSeq.GenomicInterval( "chr1", 510, 950 ) ] += "B"





These three features represent three exons of two genes, arranged as shown in this figure:

[image: _images/GenomicArrayOfSets.svg]Note that we used +=, not just =, above when adding the features. With a GenomicArrayOfSets,
you need to always use the += operator (rather than =), so that the values gets
added to the step’s set.

Now consider a read that aligns to the following interval (represented in the figure above by the light blue line ):

>>> read_iv = HTSeq.GenomicInterval( "chr1", 450, 800 )





We can query the GenomicArrayOfSets, as before:

>>> for iv, val in gas[ read_iv ].steps():
...    print(iv, sorted(val))
chr1:[450,510)/. ['A']
chr1:[510,640)/. ['A', 'B']
chr1:[640,800)/. ['B']





The interval has been subdivided into three pieces, corresponding to the three different sets that it overlaps,
namely first only A, then A and B, and finally only B.

You might be only interested in the set of all features that the read interval overlaps. To this end, just
form the set union of the three reported sets, using Python’s set union operator (|):

>>> fset = set()
>>> for iv, val in gas[ read_iv ].steps():
...    fset |= val
>>> print(sorted(fset))
['A', 'B']





Experienced Python developers will recognize that the for loop can be replaced with a single line
using a generator comprehension and the reduce function:

>>> sorted(set.union(*[val for iv, val in gas[ read_iv ].steps()]))
['A', 'B']





We will come back to the constructs in the next section, after a brief detour on how to read GTF files.






Counting reads by genes

As the example data is from an RNA-Seq experiment, we want to know how many reads fall into
the exonic regions of each gene. For this purpose we first need to read in information about the
positions of the exons. A convenient source of such information are the GTF files from
Ensembl [http://www.ensembl.org/index.html] (to be found here [ftp://ftp.ensembl.org/pub/current_gtf/]).

These file are in the GTF format [http://mblab.wustl.edu/GTF22.html], a tightening of the GFF format [http://www.sanger.ac.uk/resources/software/gff/spec.html]. HTSeq offers the
GFF_Reader class to read in a GFF file:

>>> gtf_file = HTSeq.GFF_Reader( "Saccharomyces_cerevisiae.SGD1.01.56.gtf.gz",
...    end_included=True )





The GFF format is, unfortunately, a not very well specified file format. Several
standard documents exist, from different groups, which contradict each
other in some points. Most importantly, it is unclear whether a range specified
in a GFF line is supposed to include the base under the “end” position or not. Here,
we specied the this file does include the end. Actually, this is the default
for GFF_Reader, so it would not have been necessary to specify it.
(Hint, if you are unsure about your GFF file: The length of most coding exons
is divisible by 3. If start-end is divisible by 3, too, end is
not included, if the division leaves a remainder of two, end is included.)

We iterate through this file as follows:

>>> for feature in itertools.islice( gtf_file, 10 ):
...    print(feature)
...
<GenomicFeature: exon 'R0010W' at 2-micron: 251 -> 1523 (strand '+')>
<GenomicFeature: CDS 'R0010W' at 2-micron: 251 -> 1520 (strand '+')>
<GenomicFeature: start_codon 'R0010W' at 2-micron: 251 -> 254 (strand '+')>
<GenomicFeature: stop_codon 'R0010W' at 2-micron: 1520 -> 1523 (strand '+')>
<GenomicFeature: exon 'R0020C' at 2-micron: 3007 -> 1885 (strand '-')>
<GenomicFeature: CDS 'R0020C' at 2-micron: 3007 -> 1888 (strand '-')>
<GenomicFeature: start_codon 'R0020C' at 2-micron: 3007 -> 3004 (strand '-')>
<GenomicFeature: stop_codon 'R0020C' at 2-micron: 1888 -> 1885 (strand '-')>
<GenomicFeature: exon 'R0030W' at 2-micron: 3270 -> 3816 (strand '+')>
<GenomicFeature: CDS 'R0030W' at 2-micron: 3270 -> 3813 (strand '+')>





The feature variable is filled with objects of class GenomicFeature.
If you compare the coordinated with the original file, you will notice that the
GFF_Reader has subtracted one from all starts. This is because all file parsers in
HTSeq adjust coordinates as necessary to fit the Python convention, which is that
indexing starts with zero and the end is not included. Hence, you can immediately
compare coordinates from different data formats without having to worry about
subtleties like the fact that GFF is one-based and SAM is zero-based.

As with all Python objects, the dir function shows us the slots and
functions of our loop variable feature and so allow us to inspect what data
it provides:

>>> dir( feature )   
['__class__', ..., '__weakref__', 'attr', 'frame', 'get_gff_line',
'iv', 'name', 'score', 'source', 'type']





Ignoring the attributes starting with an underscore, we can see now how to access
the information stored in the GFF file. The information from the columns of the GFF
table is accessible as follows:

>>> feature.iv
<GenomicInterval object '2-micron', [3270,3813), strand '+'>
>>> feature.source
'protein_coding'
>>> feature.type
'CDS'
>>> feature.score
'.'





The last column (the attributes) is parsed and presented as a dict:

>>> sorted(feature.attr.items())    
[('exon_number', '1'),
 ('gene_id', 'R0030W'),
 ('gene_name', 'RAF1'),
 ('protein_id', 'R0030W'),
 ('transcript_id', 'R0030W'),
 ('transcript_name', 'RAF1')]





The very first attribute in this column is usually some kind of ID, hence it is
stored in the slot name:

>>> feature.name
'R0030W'





To deal with this data, we will use the GenomicArrayOfSets introuced in the
previous section.

>>> exons = HTSeq.GenomicArrayOfSets( "auto", stranded=False )





However, our RNA-Seq experiment was not strand-specific, i.e., we do not know whether
the reads came from the plus or the minus strand. This is why we defined the GenomicArrayOfSet
as non-stranded (stranded=False in the instantiation of exons above), instructing
it to ignore all strand information. Teherfore, we now have many overlapping
genes, but the GenomicArrayOfSets will handle this.

>>> for feature in gtf_file:
...    if feature.type == "exon":
...       exons[ feature.iv ] += feature.name





Nate that, we only store the gene name this time, as this will be more convenient later.

Assume we have a read covering this interval:

>>> iv = HTSeq.GenomicInterval( "III", 23850, 23950, "." )





Its left half covers two genes (YCL058C, YCL058W-A), but its right half only
YCL058C because YCL058W-A end in the middle of the read:

>>> [(st[0], sorted(st[1])) for st in exons[iv].steps()]   
[(<GenomicInterval object 'III', [23850,23925), strand '.'>,
     ['YCL058C', 'YCL058W-A']),
 (<GenomicInterval object 'III', [23925,23950), strand '.'>,
     ['YCL058C'])]





Assuming the transcription boundaries in our GTF file to be correct, we may conclude
that this read is from the gene that appears in both steps and not from the one that
appears in only one of the steps. More generally, whenever a read overlaps multiple
steps (a new step starts wherever a feature starts or ends), we get a set of feature
names for each step, and we have to find the intersection of all these. This can be
coded as follows:

>>> iset = None
>>> for iv2, step_set in exons[iv].steps():
...    if iset is None:
...       iset = step_set.copy()
...    else:
...       iset.intersection_update( step_set )
...
>>> print(iset)
{'YCL058C'}





When we look at the first step, we make a
copy of the steps (in order to not disturb the values stored in exons.) For the following
steps, we use the intersection_update
method Python’s standard set class, which performs a set intersection in
place. Afterwards, we have a set with precisely one element. Getting this one
element is a tiny bit cumbersome; to access it, one needs to write:

>>> list(iset)[0]
'YCL058C'





In this way, we can go through all our aligned reads, calculate the intersection
set, and, if it contains a single gene name, add a count for this gene. For the
counters, we use a dict, which we initialize with a zero for each gene name:

>>> counts = {}
>>> for feature in gtf_file:
...    if feature.type == "exon":
...       counts[ feature.name ] = 0





Now, we can finally count:

>>> sam_file = HTSeq.SAM_Reader( "yeast_RNASeq_excerpt.sam" )
>>> for alnmt in sam_file:
...    if alnmt.aligned:
...       iset = None
...       for iv2, step_set in exons[ alnmt.iv ].steps():
...           if iset is None:
...              iset = step_set.copy()
...           else:
...              iset.intersection_update( step_set )
...       if len( iset ) == 1:
...          counts[ list(iset)[0] ] += 1





We can now conveniently print the result with:

>>> for name in sorted( counts.keys() ):
...    print(name, counts[name])   
15S_rRNA 0
21S_rRNA 0
HRA1 0
...
YPR048W 2
YPR049C 3
YPR050C 0
YPR051W 1
YPR052C 1
YPR053C 5
YPR054W 0
...
tY(GUA)M2 0
tY(GUA)O 0
tY(GUA)Q 0





Some aligners can output gapped or spliced alignments. In a SAM file, this in encoded
in the CIGAR string. HTSeq has facilities to handle this conveniently, too, with the
class CigarOperation. Chapter Counting reads in features with htseq-count describes a script which offers
some further counting schemes.




And much more

This tour is only meant to give an overview. There are many more tasks that can
be solved with HTSeq. Have a look at the reference documentation in the following pages
to see what else is there.







          

      

      

    

  

    
      
          
            
  
A detailed use case: TSS plots

A common task in ChIP-Seq analysis is to get profiles of marks with respect to
nearby features. For example, when analysing histone marks, one is often interested
in the position and extend of such marks in the vicinity of transcription start
sites (TSSs). To this end, one commonly calculates the coverage of reads or fragments
across the whole genome, then marks out fixed-size windows centered  around the
TSSs of all genes, takes the coverages in these windows and adds them up to a
“profile” that has the size of the window. This is a simple operation, which, however,
can become challenging, when working with large genomes and very many reads.

Here,
we demonstrate various ways of how data flow can be organized in HTSeq by means of
different solutions to this task.

As example data, we use a short excerpt from
the data set by Barski et al. (Cell, 2007, 129:823). We downloaded the FASTQ file
for one of the H3K4me3 samples (Short Read Archive accession number SRR001432),
aligned it against the Homo sapiens genome build GRCh37 with BWA, and provide the
start of this file (actually only containing reads aligned to chromosome 1) as
file SRR001432_head.bam with the HTSeq example files. As annotation, we use
the file Homo_sapiens.GRCh37.56_chrom1.gtf, which is the part of the Ensembl
GTF file for Homo sapiens for chromosome 1.


Using the full coverage

We start with the straight-forward way of calculating the full coverage first
and then summing up the profile. This can be done as described in the Tour:

>>> import HTSeq
>>> bamfile = HTSeq.BAM_Reader( "SRR001432_head.bam" )
>>> gtffile = HTSeq.GFF_Reader( "Homo_sapiens.GRCh37.56_chrom1.gtf" )
>>> coverage = HTSeq.GenomicArray( "auto", stranded=False, typecode="i" )
>>> for almnt in bamfile:
...    if almnt.aligned:
...       coverage[ almnt.iv ] += 1





To find the location of all transcription start sites, we can look in the GTF
file for exons with exon number 1 (as indicated by the exon_number
attribute in Ensembl GTF files) and ask for their directional start (start_d).
The following loop extracts and prints this information (using itertools.islice
to go through only the first 100 features in the GTF file):

>>> import itertools
>>> for feature in itertools.islice( gtffile, 100):
...    if feature.type == "exon" and feature.attr["exon_number"] == "1":
...       print(feature.attr["gene_id"], feature.attr["transcript_id"], feature.iv.start_d_as_pos)
ENSG00000223972 ENST00000456328 1:11873/+
ENSG00000223972 ENST00000450305 1:12009/+
ENSG00000227232 ENST00000423562 1:29369/-
ENSG00000227232 ENST00000438504 1:29369/-
ENSG00000227232 ENST00000488147 1:29569/-
ENSG00000227232 ENST00000430492 1:29342/-
ENSG00000243485 ENST00000473358 1:29553/+
ENSG00000243485 ENST00000469289 1:30266/+
ENSG00000221311 ENST00000408384 1:30365/+
ENSG00000237613 ENST00000417324 1:36080/-
ENSG00000237613 ENST00000461467 1:36072/-
ENSG00000233004 ENST00000421949 1:53048/+
ENSG00000240361 ENST00000492842 1:62947/+
ENSG00000177693 ENST00000326183 1:69054/+





As the GTF file contains several transcripts for each gene, one TSS may appear
multiple times, giving undue weight to it. Hence, we collect them in a set
as this data type enforces uniqueness.

>>> tsspos = set()
>>> for feature in gtffile:
...    if feature.type == "exon" and feature.attr["exon_number"] == "1":
...       tsspos.add( feature.iv.start_d_as_pos )





Let’s take one of these starting positions. To get a nice one, we manually chose
this one here, just for demonstration purposes:

>>> p = HTSeq.GenomicPosition( "1", 145439814, "+" )





This is really one of the TSSs in the set:

>>> p in tsspos
True





We can get a window centered on this TSS by just subtracting and adding a fixed
value (half of the desired window size, let’s use 3 kb):

>>> halfwinwidth = 3000
>>> window = HTSeq.GenomicInterval( p.chrom, p.pos - halfwinwidth, p.pos + halfwinwidth, "." )
>>> window
<GenomicInterval object '1', [145436814,145442814), strand '.'>





We can check the coverage in this window by subsetting and transforming to a list:

>>> list( coverage[window] )  
[0, 0, 0, ..., 0, 0]





As we will work with numpy [http://numpy.scipy.org/] from now on, it may be better to get this as
numpy array:

>>> import numpy
>>> wincvg = numpy.fromiter( coverage[window], dtype='i', count=2*halfwinwidth )
>>> wincvg
array([0, 0, 0, ..., 0, 0, 0], dtype=int32)





With matplotlib, we can see that this vector is, in effect, not all zero:

>>> from matplotlib import pyplot 
>>> pyplot.plot( wincvg )    
>>> pyplot.show()            





[image: _images/tss_fig1.png]
To sum up the profile, we initialize a numpy vector of the size of our window with zeroes:

>>> profile = numpy.zeros( 2*halfwinwidth, dtype='i' )





Now, we can go through the TSS positions and add the coverage in their windows
to get the profile:

>>> for p in tsspos:
...    window = HTSeq.GenomicInterval( p.chrom, p.pos - halfwinwidth, p.pos + halfwinwidth, "." )
...    wincvg = numpy.fromiter( coverage[window], dtype='i', count=2*halfwinwidth )
...    if p.strand == "+":
...       profile += wincvg
...    else:
...       profile += wincvg[::-1]





Note that we add the window coverage reversed (“[::-1]”) if the gene was on the minus
strand.

Using matplotlib, we can plot this:

>>> pyplot.plot( numpy.arange( -halfwinwidth, halfwinwidth ), profile )  
>>> pyplot.show()  





[image: _images/tss_fig2.png]
We can see clearly that the reads concentrate around the TSS, with a prominent peak
a bit downstream (if you use matplotlib’s interactive zoom, you can easily see that
the peak is at 153 bp) and a dip upstream, at -79 bp.

Going back to the beginning, there is one possible improvement: When calculating the
coverage, we just added one to all the base pairs that the read covered. However, the
fragment extends beyond the read, to a length of about 200 bp (the fragment size for
which Barski et al. selected). Maybe we get a better picture by calculating
the coverage not from the reads but from the fragments, i.e., the reads extended
to fragment size. For this, we just one
line, to extend the read to 200 bp. Using this, we now put the whole script together:

import HTSeq
import numpy
from matplotlib import pyplot

bamfile = HTSeq.BAM_Reader( "SRR001432_head.bam" )
gtffile = HTSeq.GFF_Reader( "Homo_sapiens.GRCh37.56_chrom1.gtf" )
halfwinwidth = 3000
fragmentsize = 200

coverage = HTSeq.GenomicArray( "auto", stranded=False, typecode="i" )
for almnt in bamfile:
   if almnt.aligned:
      almnt.iv.length = fragmentsize
      coverage[ almnt.iv ] += 1

tsspos = set()
for feature in gtffile:
   if feature.type == "exon" and feature.attr["exon_number"] == "1":
      tsspos.add( feature.iv.start_d_as_pos )

profile = numpy.zeros( 2*halfwinwidth, dtype='i' )      
for p in tsspos:
   window = HTSeq.GenomicInterval( p.chrom, p.pos - halfwinwidth, p.pos + halfwinwidth, "." )
   wincvg = numpy.fromiter( coverage[window], dtype='i', count=2*halfwinwidth )
   if p.strand == "+":
      profile += wincvg
   else:
      profile += wincvg[::-1]






The script produces a profile variable whhich we can plot by adding these lines
to it:

pyplot.plot( numpy.arange( -halfwinwidth, halfwinwidth ), profile )  
pyplot.show()  





[image: _images/tss_fig3.png]
The plot looks much smoother with the extended fragments.

The coverage vector can be held in memory, even for a very large genome, because large
parts of it are zero and even where there are reads, the values tend to stay constant
for stretches of several bases. Hence, GenomicArray’s step storage mode is useful.
If, however, extremely large amounts of reads are processed, the coverage vector can become “rough” and
change value at every position. Then, the step storage mode becomes inefficient
and we might be better off with an ordinary dense vector such as provided by numpy.
As this numpy vector becomes very large, it may not fit in memory, and the ‘memmap’
storage (using numpy’s memmap facility) then uses temporary files on disk. We
mention these possibilities as they may be useful when working with the full coverage vector
is required. Here, however, we can do otherwise.




Using indexed BAM files

We do not need the coverage everythere. We only need it close to the TSSs. We can
sort our BAM file by position (samtools sort) and index it (samtools index)
and then use random access, as HTSeq exposes this functionality of SAMtools.

Let’s say we use the same window as above as example:

>>> p = HTSeq.GenomicPosition( "1", 145439814, "+" )
>>> window = HTSeq.GenomicInterval( p.chrom, p.pos - halfwinwidth, p.pos + halfwinwidth, "." )
>>> window
<GenomicInterval object '1', [145436814,145442814), strand '.'>





Then, we can simply get a list of all reads within this interval as follows:

>>> sortedbamfile = HTSeq.BAM_Reader( "SRR001432_head_sorted.bam" )
>>> for almnt in sortedbamfile[ window ]:
...     print(almnt)   
<SAM_Alignment object: Read 'SRR001432.90270 USI-EAS21_0008_3445:8:3:245:279 length=25' aligned to 1:[145437532,145437557)/->
 ...
<SAM_Alignment object: Read 'SRR001432.205754 USI-EAS21_0008_3445:8:5:217:355 length=25' aligned to 1:[145440975,145441000)/->





Let’s have a closer look at the last alignment. As before, we first extent the read to fragment size:

>>> fragmentsize = 200
>>> almnt.iv.length = fragmentsize
>>> almnt
<SAM_Alignment object: Read 'SRR001432.205754 USI-EAS21_0008_3445:8:5:217:355 length=25' aligned to 1:[145440800,145441000)/->





The read has been aligned to the “-”
strand, and hence, we should look at its distance to the end of the window
(i.e., p.pos, the position of the TSS, plus half the window width)
to see where it should be added to the profile vector:

>>> start_in_window = p.pos + halfwinwidth - almnt.iv.end
>>> end_in_window   = p.pos + halfwinwidth - almnt.iv.start
>>> print(start_in_window, end_in_window)
1814 2014





To account for this read, we should add ones in the profile vector along
the indicated interval.

Using this, we can go through the set of all TSS positions (in the tsspos
set variable that we created above) and for each TSS position, loop through
all aligned reads close to it. Here is this double loop:

>>> profileB = numpy.zeros( 2*halfwinwidth, dtype='i' )
>>> for p in tsspos:
...     window = HTSeq.GenomicInterval( p.chrom, p.pos - halfwinwidth, p.pos + halfwinwidth, "." )
...     for almnt in sortedbamfile[ window ]:
...         almnt.iv.length = fragmentsize
...         if p.strand == "+":
...             start_in_window = almnt.iv.start - p.pos + halfwinwidth
...             end_in_window   = almnt.iv.end   - p.pos + halfwinwidth
...         else:
...             start_in_window = p.pos + halfwinwidth - almnt.iv.end
...             end_in_window   = p.pos + halfwinwidth - almnt.iv.start
...         profileB[ start_in_window : end_in_window ] += 1





This loop now runs a good deal faster than our first attempt, and has a much
smaller memory footprint.

We can plot the profiles obtained from our two methods on top of each other:

>>> pyplot.plot( numpy.arange( -halfwinwidth, halfwinwidth ), profile, ls="-", color="blue" )   
>>> pyplot.plot( numpy.arange( -halfwinwidth, halfwinwidth ), profileB, ls="--", color="red" )   
>>> pyplot.show()   
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We notice that they are equal, except for the boundaries. This artifact arose
because we extend reads to fragment length: A read which is just outside
the window will not be found by our new loop even though if may reach into our
profile window after extension to fragment length. Therefore, we should make the
window used to subset the BAM file a bit wider than before to get even reads that
are once the fragment length away. However, with this, we may also get reads that
get extended into the wrong direction, such that start_in_windows and
end_in_windows extend beyond the size of the fragment vector. Four extra lines
need to be added to deal with these cases, and then, our new script gives the
same result as the previous one.

Here is the complete code:

import HTSeq
import numpy
from matplotlib import pyplot

sortedbamfile = HTSeq.BAM_Reader( "SRR001432_head_sorted.bam" )
gtffile = HTSeq.GFF_Reader( "Homo_sapiens.GRCh37.56_chrom1.gtf" )
halfwinwidth = 3000
fragmentsize = 200

tsspos = set()
for feature in gtffile:
   if feature.type == "exon" and feature.attr["exon_number"] == "1":
      tsspos.add( feature.iv.start_d_as_pos )

profile = numpy.zeros( 2*halfwinwidth, dtype='i' )   
for p in tsspos:
   window = HTSeq.GenomicInterval( p.chrom, 
       p.pos - halfwinwidth - fragmentsize, p.pos + halfwinwidth + fragmentsize, "." )
   for almnt in sortedbamfile[ window ]:
      almnt.iv.length = fragmentsize
      if p.strand == "+":
         start_in_window = almnt.iv.start - p.pos + halfwinwidth 
         end_in_window   = almnt.iv.end   - p.pos + halfwinwidth 
      else:
         start_in_window = p.pos + halfwinwidth - almnt.iv.end
         end_in_window   = p.pos + halfwinwidth - almnt.iv.start
      start_in_window = max( start_in_window, 0 )
      end_in_window = min( end_in_window, 2*halfwinwidth )
      if start_in_window >= 2*halfwinwidth or end_in_window < 0:
         continue
      profile[ start_in_window : end_in_window ] += 1






As before, to get a plot, add:

pyplot.plot( numpy.arange( -halfwinwidth, halfwinwidth ), profile )   
pyplot.show()   





You will now get the same plot as we got with the first method.




Streaming through all reads

The previous solution requires sorting and indexing the BAM file. For large amounts
of data, this may be a burden, and hence, we show a third solution that does not
require random access to reads. The idea is to go through all reads in arbitrary
order, check for each read whether it falls into one or more windows around TSSs,
and, if so, adds ones to the profile vector at the appriate places. In essence, it
is the same tactic as before, but nesting the two for loops the other way round.

In order to be able to check quickly whether a read overlaps with a window, we
can use a GenomicArrayOfSets, in which we mark off all windows. For
easy access, we denote each winow with an GenomicPosition object
giving its midpoint, i.e., the actual TSS position, as follows:

>>> tssarray = HTSeq.GenomicArrayOfSets( "auto", stranded=False )
>>> for feature in gtffile:
...    if feature.type == "exon" and feature.attr["exon_number"] == "1":
...       p = feature.iv.start_d_as_pos
...       window = HTSeq.GenomicInterval( p.chrom, p.pos - halfwinwidth, p.pos + halfwinwidth, "." )
...       tssarray[ window ] += p

>>> len( list( tssarray.chrom_vectors["1"]["."].steps() ) )
30085





As before, p is the position of the TSS, and window is the interval
around it.

To demonstrate how this data structure can be used, we take a specific read that
we selected as a good example:

>>> for almnt in bamfile:
...     if almnt.read.name.startswith( "SRR001432.700 " ):
...         break
>>> almnt
<SAM_Alignment object: Read 'SRR001432.700 USI-EAS21_0008_3445:8:1:35:294 length=25' aligned to 1:[169677855,169677880)/->





Again, we extent the read to fragment size:

>>> almnt.iv.length = fragmentsize
>>> almnt
<SAM_Alignment object: Read 'SRR001432.700 USI-EAS21_0008_3445:8:1:35:294 length=25' aligned to 1:[169677680,169677880)/->





To see which windows the read covers, we subset the tssarray and ask for steps
that the fragment in almnt covers:

>>> for step_iv, step_set in tssarray[ almnt.iv ].steps():
...    print("Step", step_iv, ", contained by these windows:")
...    out = set()
...    for p in step_set:
...        out.add("   Window around TSS at "+str(p))
...    print('\n'.join(sorted(out)))
Step 1:[169677680,169677838)/. , contained by these windows:
   Window around TSS at 1:169677780/-
   Window around TSS at 1:169679672/-
Step 1:[169677838,169677880)/. , contained by these windows:
   Window around TSS at 1:169677780/-
   Window around TSS at 1:169679672/-
   Window around TSS at 1:169680838/-





As is typical for GenomicArrayOfSets, some TSSs appear in more than one step. To make
sure that we don’t count them twice, we take the union of all the step sets (with
the operator |=, which means in-place union when used for Python sets):

>>> s = set()
>>> for step_iv, step_set in tssarray[ almnt.iv ].steps():
...    s |= {x.__repr__() for x in step_set}
>>> sorted(s)  #
["<GenomicPosition object '1':169677780, strand '-'>",
 "<GenomicPosition object '1':169679672, strand '-'>",
 "<GenomicPosition object '1':169680838, strand '-'>"]





For each of the values for p in s, we calculate values for start_in_window
and stop_in_window, as before, and then add ones in the profile vector
at the appropriate places.

Putting all this together leads to this script:

import HTSeq
import numpy
from matplotlib import pyplot

bamfile = HTSeq.BAM_Reader( "SRR001432_head.bam" )
gtffile = HTSeq.GFF_Reader( "Homo_sapiens.GRCh37.56_chrom1.gtf" )
halfwinwidth = 3000
fragmentsize = 200

tsspos = HTSeq.GenomicArrayOfSets( "auto", stranded=False )
for feature in gtffile:
   if feature.type == "exon" and feature.attr["exon_number"] == "1":
      p = feature.iv.start_d_as_pos
      window = HTSeq.GenomicInterval( p.chrom, p.pos - halfwinwidth, p.pos + halfwinwidth, "." )
      tsspos[ window ] += p

profile = numpy.zeros( 2*halfwinwidth, dtype="i" )
for almnt in bamfile:
   if almnt.aligned:
      almnt.iv.length = fragmentsize
      s = set()
      for step_iv, step_set in tsspos[ almnt.iv ].steps():
         s |= step_set
      for p in s:
         if p.strand == "+":
            start_in_window = almnt.iv.start - p.pos + halfwinwidth
            end_in_window   = almnt.iv.end   - p.pos + halfwinwidth
         else:
            start_in_window = p.pos + halfwinwidth - almnt.iv.end
            end_in_window   = p.pos + halfwinwidth - almnt.iv.start
         start_in_window = max( start_in_window, 0 )
         end_in_window = min( end_in_window, 2*halfwinwidth )
         profile[ start_in_window : end_in_window ] += 1






Again, to get a plot (which will look the same as before), add:

pyplot.plot( numpy.arange( -halfwinwidth, halfwinwidth ), profile )  
pyplot.show()  











          

      

      

    

  

    
      
          
            
  
Counting reads

A very typical use case for the HTSeq library is to for a given list of genomic features (such as genes,
exons, ChIP-Seq peaks, or the like), how many sequencing reads overlap each of the features. As a more
complex example for using HTSeq, we supply the script htseq-count, which takes a GTF file with
gene models and a SAM file and counts for each gene how many reads map to it; see Section Counting reads in features with htseq-count.

The htseq-count script, however, has implementation details which were chosen with a specific use
case in mind, namely to quantify gene expression for subsequent testing for differential expression,
which is why, for example, the script does not count reads that map to multiple genes. For other
applications, different resolutions of such ambiguities might be desirable, and then, a bioinformatician
may want to create her own counting script. In the following, we expand on the coverage of this
topic in the Tour (A tour through HTSeq) and give building blocks which should make it possible to write such scripts
also for bioinformaticians with only modest knowledge of Python.


Preparing the feature array

Our general approach is to define a GenomicArrayOfSets and fill it with all the features we would
like to get counts for.

Similar to the code shown in the Tour, we prepare such an object from the GTF file for yeast as follows:

import HTSeq

gtf_file = HTSeq.GFF_Reader( "Saccharomyces_cerevisiae.SGD1.01.56.gtf.gz" )
exons = HTSeq.GenomicArrayOfSets( "auto", stranded=True )

for feature in gtf_file:
    if feature.type == "exon":
       exons[ feature.iv ] += feature.attr["gene_id"]





A few things might be noteworthy here: For each exon, we just store the gene ID in the genomic array. Hence,
all exons from the same gene are represented with the same string. This is deliberate, as we want to count
on the level of genes, not exons, but could be done differently: storing the whole feature object in
the GenomicArrayOfSets uses up noticeably more memory but allows to access more information in downstream
processing.

Also note that in a GTF file, an exon that appears in several transcripts appear once for each
transcripts. Because all these exons are represented by the same name, they will be collapsed to a single
value in the GenomicArrayOfSets.

GTF files are not the only source of feature annotations. One could, as well, read a BED file or other
text file with genomic coordinates of, say, ChIP-Seq peaks, putative enhancers, or any other kind of data.
For example, if we have a tab-separated text file with feature coordinates in four columns – feature ID,
chromosome, start, end – we might use:

features =  HTSeq.GenomicArrayOfSets( "auto", stranded=False )
for line in open( "myfeatures.txt" ):
   fields = line.split( "\t" )
   iv = HTSeq.GenomicInterval( fields[1], int(fields[2]), int(fields[3]) )
   features[ iv ] += fields[0]





Here, we have assumed that the coordinates follow Python conventions: The first base of a chromosome is
numbered 0, not 1, and the end position is not included in the interval. Remember to subtract or add 1 as
necessary if this is not the case with your input data.




Counting ungapped single-end reads

We start with the easiest case, that of ungapped single-end reads. We first recapitulate points
already shown in the Tour and then add further refinements in the following.

If we have a SAM file with unmapped reads, we might use the following code:

import collections
counts = collections.Counter( )

almnt_file = HTSeq.SAM_Reader( "my_alignments.sam" )
for almnt in almnt_file:
   if not almnt.aligned:
      count[ "_unmapped" ] += 1
      continue
   gene_ids = set()
   for iv, val in features[ almnt.iv ].steps():
      gene_ids |= val
   if len(gene_ids) == 1:
      gene_id = list(gene_ids)[0]
      counts[ gene_id ] += 1
   elif len(gene_ids) == 0:
      counts[ "_no_feature" ] += 1
   else:
      counts[ "_ambiguous" ] += 1

for gene_id in counts:
   print gene_id, counts[ gene_id ]





For the benefit of readers with only limited Python knowledge, we go through this code chunk
step by step:

The variable counts contains a dictionary, which will associate gene IDs with read counts. We
use a variant of Python’s usual dict type, namely the Counter class from the collections
module in the standard library (from Python 2.7 onwards), which initialized any new key with
the value zero. (Users of Python 2.6 can use collections.defaultdict(int) instead.)

We then instantiate a SAM_Reader` object (If you have a BAM file, use BAM_Reader
instead) and run through all its record in a for loop. As described in the Tour, each record
in the SAM file is vprovided to the loop body in the variable almnt.

We first check whether the read might be unaligned, and if so, increment a special counter
that we call _unmapped (with an underscore as prefix to distinguish it from gene IDs).

For the aligned reads, the alignment’s genomic interval, almnt.iv, shows us the interval
covered by the read. Using this as an index to feature gives us a view on this
stretch of the feature container, in which we had stored the exons. The iterator
features[ almnt.iv ].steps() returns pairs of the form (iv, val), where iv is
a genomic interval and val is the set of gene IDs associated with the exons overlapping
this step. Using the |= operator, we get the union of the sets of all the steps in the
initially empty set gene_ids, which, at the end, contains the gene IDs of all genes
that the read overlaps. Remember that a set can contain each element at most once. Hence,
even if we see the same gene in several steps (for example because the read overlaps with
several exons), we still get it only once in gene_ids.

We then treat three possible cases, namely that the set gene_ids contains exactly one element,
that it is empty, or that it contains mroe than one element. The first case is the desired one:
The read overlaps with precisely one gene, and we hence increase the count for this gene by one.
Note that we need the idiom list(gene_ids)[0] to extract the name of this single gene from
the set. If the read did not overlap with a gene (len(gene_ids) == 0), we increase a special
counter that we call _no_feature.

What should we do if the read overlaps more than one gene? Here, one might now come up with
sophisticated logic to decide which gene to count the read for. To keep things simple, however,
we simply count the read for none of the overlapped genes and instead increase the
special counter _ambiguous .

In the final two lines, we loop through the counter to print out the counts.




Counting gapped single-end reads


CIGAR Operations

The above code can be used as is e.g. for ChIP-Seq data, but for RNA-Seq data, we need an additional
ingredient: When sequencing RNA, many reads will pass over an exon-exon junction and hence align
to two (or more) disjunct intervals on the genome, tyically with an intron in between. If the reads
have been aligned with a splice-aware alignment tool, such gapped alignment is indicated in
the SAM file by the CIGAR string.

HTSeq parses the CIGAR string and presents it in the cigar slot of a class:SAM_Alignment object
as a list of class:CigarOperation objects. As an example, consider a SAM alignment record
describing a read that has been aligned to position 1000 on the ‘+’’ strand of chromosome chr1,
with CIGAR string 20M300N30M2I8M. Following the SAM specification (please read it first if
you are unfamiliar with CIGAR strings), this means an alignment as depicted here:

[image: _images/cigar.png]
[[TO DO: Nicer image, add “chr1:”]]

The SAM_Alignment object will hence have in its cigar slot a list of 5 objects, each giving the
information of one row of the table. Note how some operations are associated with zero-length intervals
on either the reference (i.e., chromosome) or the query (i.e., read). For example, the intron (N200)
spans 200 bp on the chromosome (1020-1320) but a zero-length interval on the read (20-20). In this manner,
the CigarOperation class conveniently shows which intervals are affected by which operation.




Counting with gapped reads

In the code above, we used this for loop

gene_ids = set()
for iv, val in features[ almnt.iv ].steps():
    gene_ids |= val





to collect the gene IDs of all exons overlapped by the reads interval. For loop runs over the whole
interval covered by the aligned read, i.e., in the figure above, it would run from position 1000
to position 1378 on chromosome 1, including the alignment gap from 1020 to 1320. By looking at each
cigar operation separately we can correctly skip the gaps. We only need to replace the for
loop with the following double loop

gene_ids = set()
for cigop in almnt.cigar:
   if cigop.type != "M":
      continue
   for iv, val in features[ cigop.ref_iv ].steps():
      gene_ids |= val





The outer loop goes through the CIGAR operation, skipping all but the match operations, and
the inner loop inspects the steps covered by the match operations and collects the gene_ids in
the gene_ids set variable. The rest of the code stays as above.

Of course, custom logic can be implemented her to infer useful information from other cigar
operation types, but for the simple counting task at hand here, we do not need this.




Dealing with multiple alignments

If the aligner finds multiple alignments for a read, these are typically reported in multiple
SAM records. If the SAM file unsorted or sorted by alignment position, it is hard to look at
all the possible alignments of a given read together, because the records with the alignments
for a given read are spread throughout the file. If the purpose of the counting is subsequent
testing for differential expression, it is often safest, anyway, to skip all multiply
aligned reads (because a read that is counted for several genes may cause spurious calls of
differential expression), and then, we merely need to recognize that a read has multiple
alignments. In the htseq-count script (see ref:count), this is done by two means:
First, many (but not all aligners) use the optional field “NH”, which indicates the number
of reported alignments. Testing for almnt.optional_field("NH") > 1 allows to find these
read. Also, if there are multiple good alignments, without one of them being considered by the
aligner to be more likely than the others, then the alignment quality (also denoted mapping quality,
MAPQ, in the SAM specification) should be 3 or less. Hence, if one skips all reads with an
alignment quality below, say, 10 (almnt.aQual < 10), one will skip over all multiply aligned
reads (provided the aligner indicates the mapping quality correctly, which is not always the case).

For more advanced use cases, it may be desirable to inspect all reported alignment, for example, to
the chose one using some custom logic, or to aggregate information over all of them. If the SAM
or BAM file has been sorted by read name then alternative alignments for the same read will
be in adjacent lines or records. To facilitate handling this case, HTSeq offers the function
function:bundle_multiple_alignments. It takes an iterator over SAM_Alignment objects
(e.g., a SAM_Reader or BAM_Reader object) and returns an iterator over
lists of SAM_Alignment objects. Each list contains only records describing alignments
for the same read. For this to work, the SAM file has to be sorted by read name to ensure that
mutiple alignments for the same read appear in adjacent records.




Handling paired-end reads

In the case of paired-end alignments, we will typically want to count read pairs, not reads. After all,
the fragment (and not the reads from either of its ends) are the actual evidence for a gene’s expression
that we want to count. Therefore, we want to process the alignment information for the two mated ends
together.

First a quick review of how alignments for paired-end data are presented in a SAM file: The two “mated” reads referring to
the two end of a DNA fragment are reported in two separate records. The fact that the records describe
the same fragment can be seen from the fact that they have the same read name (given by the read.name
slot). That they refer to opposite ends can be seen from the respective bits in the FLAG field, which
are exposed by the SAM_Alignment.pe_which slot of the SAM_Alignment class, which takes
the values first or second (or unknown if not specified in the flag field, or not_paired_end if
an alignment of a single-end read is represented) . If the read pair has multiple
alignments, each alignment is reported by a pair of SAM records. As corresponding records are not necessarily
in adjacent lines, they are “linked” by the mate position fields (called RNEXT and PNEXT in the SAM specification),
which are exposed by the slot SAM_Alignment.mate_pos, which contains a GenomicPosition
object. The two records describing the two halves of a given alignment can be recognized as being correspondent
from the fact that each record’s mate_pos attribute is equal to the starting position (given by``iv.start_as_pos``).

Note that all the SAM records for a given read pair may be spread throughout the file. Only if the file is sorted
by read name can we expect them to be at adjacent places, and even then, the records for multiple alignments can be
intermixed.

To facilitate handling paired-end alignments, HTSeq offers the function pair_SAM_alignments(). This function
expects an iterator over SAM records (typically, a SAM_Reader or BAM_Reader object) and returns
an iterator over pairs (i.e., tuples of length 2) of SAM_Alignment records, with the first element being the alignment of the
read from the first sequencing pass (i.e., from the 5’ end of the DNA fragment) and the second element the corresponding alignment
from the second pass (i.e., the 3’ read). The function expects the SAM file to be sorted by read name. It proceeds by reading
in consecutive records with the same read name and storing them in a list. Once it finds a record with a differing read name,
the function goes through the list, sorts its content into pairs of corresponding alignment records and yields these pairs. If the
function’s option bundle``[TODO: add description of "bundle" in alignment.rst, too] is
set to ``True, the function does not yield the pairs separately but instead yields a list of all alignment pairs for
the same read.

Using these features, we can modify our counting loop as follows for paired-end data:

almnt_file = HTSeq.SAM_Reader( "my_paired_alignments.sam" )
counts = collections.Counter( )
for bundle in HTSeq.pair_SAM_alignments( almnt_file, bundle=True ):
   if len(bundle) != 1
      continue  # Skip multiple alignments
   first_almnt, second_almnt = bundle[0]  # extract pair
   if not first_almnt.aligned and second_almnt.aligned:
      count[ "_unmapped" ] += 1
      continue
   gene_ids = set()
   for iv, val in features[ left_almnt.iv ].steps():
      gene_ids |= val
   for iv, val in features[ right_almnt.iv ].steps():
      gene_ids |= val
   if len(gene_ids) == 1:
      gene_id = list(gene_ids)[0]
      counts[ gene_id ] += 1
   elif len(gene_ids) == 0:
      counts[ "_no_feature" ] += 1
   else:
      counts[ "_ambiguous" ] += 1

for gene_id in counts:
   print gene_id, counts[ gene_id ]





Note that here, we skip reads if only one of two mates are aligned. Of course, one could choose as well to count such a
pair for the gene to which the aligned mate has been mapped.

The need to sort paired-end SAM files by read name can be an inconvenience, because many aligners output the SAM file
sorted by position. In many use case, we can expect that the two ends of the same read will align to positions close
to each other on the genome. Then, an alternative strategy to pair up alignment records is go through the SAM file,
which has been sorted by position, and keep a dictionary of alignment records whose partner record has not been found yet.
For each record, we check the dictionary for its partner (i.e., for a record with the same read name and matching
position information). If we find the partner, we remove it from the dictionary and yield both together as a pair. If the partner
is not in the dictionary, the record is stored in the dictionary to wait for its partner to come along. As long as
mated records are not too far from each other in the file, the dictionary will only contain a manageable number of records.
Only if reads are often very far from each other (e.g., because the file was not sorted by position), the dictionary
might become too large to fit into memory. HTSeq offers this manner of pairing up alignment records in the function
pair_SAM_alignment_with_buffer(), which can be used in the same manner as pair_SAM_alignment(), but
takes one optional additional argument, the maximum size of the buffer (by default, 3 million).









          

      

      

    

  

    
      
          
            
  
Reference overview

This page offers a brief overview over all classes and functions offered by HTSeq.


Parser and record classes

For all supported file formats, parser classes (called Reader) are provided. These classes all
instatiated by giving a file name or an open file or stream and the function as iterator generators,
i.e., the parser objects can be used, e.g., in a for loop to yield a sequence of objects, each
desribing one record. The table gives the parse class and the record class yielded. For details,
see the linked documentation

For most formats, functionality for writing files of the format is provided. See the detailed documentation
as these methods and classes have varying semantics.










	File format
	typical content
	Parser class for reading
	Record class yielded by parser
	Method/class method for writing




	FASTA
	DNA sequences
	FastaReader
	Sequence
	Sequence.write_to_fasta_file()


	FASTQ
	sequenced reads
	FastqReader
	SequenceWithQualities
	SequenceWithQuality.write_to_fastq_file()


	GFF (incl. GFF3 and GTF)
	genomic annotation
	GFF_Reader
	GenomicFeature
	GenomicFeature.get_gff_line()


	BED
	score data or annotation
	BED_Reader
	GenomicFeature
	 


	Wiggle (incl. BedGraph)
	score data on a genome
	WiggleReader
	pair: (GenomicInterval, float)
	GenomicArray.write_bedgraph_file()


	SAM
	aligned reads
	SAM_Reader
	SAM_Alignment
	SAM_Alignment.get_sam_line()


	BAM
	aligned reads
	BAM_Reader
	SAM_Alignment
	BAM_Writer


	VCF
	variant calls
	VCF_Reader
	VariantCall
	 


	Bowtie (legacy format)
	aligned reads
	BowtieReader
	BowtieAlignment
	 


	SolexaExport (legacy format)
	aligned reads
	SolexaExportReader
	SolexaExportAlignment
	 





Most parser classes are sub-classes of class FileOrSequence, which users will, however, rarely use directly.




Specifying genomic positions and intervals

The class GenomicInterval specifies an interval on a chromosome (or contig or the like). It is defined by specifying the chromosome (or contig) name,
the start and the end and the strand. Convenience methods are offered for different ways of accessing this information, and for tetsing
for overlap between intervals. A GenomicPosition, technically a GenomicInterval of length 1, refers to a single nucleotide or base-pair
position.

Objects of these classes are used internally wherever intervals or positions are represented, especially in record classes and as
index keys to genomic array.

See page Genomic intervals and genomic arrays for details.




Genomic arrays

The classes GenomicArray and GenomicArrayOfSets are container classes to store data associated with genomic positions or intervals.

See page Genomic intervals and genomic arrays for details.




Special features for SAM/BAM files

The class CigarOperation offers a convenient way to handle the information encoded in the CIGAR field of SAM files.

The functions pair_SAM_alignments() and pair_SAM_alignments_with_buffer() help to pair up the records
in a SAM file that describe a pair of alignments for mated reads from the same DNA fragment.

Similarly, the function bundle_multiple_alignments() bundles multiple alignment record pertaining to the same read or read pair.

See page Read alignments for details.







          

      

      

    

  

    
      
          
            
  
Sequences and FASTA/FASTQ files


Sequence

A Sequence object holds a DNA sequence. Besides the actual sequence, an object
may also hold a name.


	Instantiation

	
	
class HTSeq.Sequence(seq, name="unnamed")

	



Pass the DNA sequence and, optionally, a name or ID to the constructor:

>>> myseq = HTSeq.Sequence( b"ACCGTTAC", "my_sequence" )





(If the name is omitted, the default "unnamed" is used.)



	Attributes

	
	
Sequence.seq

	
Sequence.name

	
Sequence.descr

	



The information can be accessed via the attributes seq and name, which are strings:

>>> myseq.seq
b'ACCGTTAC'
>>> myseq.name
'my_sequence'





There is a third attribute, called descr, which is by default None but may contain
a “description”. See class FastaReader for more information.





Representation and string conversion


The __repr__ method gives name and length:

>>> myseq
<Sequence object 'my_sequence' (length 8)>





The __str__ method returns just the sequence:

>>> print(myseq)
ACCGTTAC





Note that the length of a sequence is the number of bases:

>>> len( myseq )
8









	Subsetting

	Subsetting works as with strings:

>>> myseq2 = myseq[3:5]
>>> myseq2.name
'my_sequence[part]'
>>> myseq2.seq
b'GT'





(Note that "[part]" is appended to the name of the subsetted copy.)





Reverse complement



	
Sequence.get_reverse_complement()

	






>>> print(myseq.get_reverse_complement())
GTAACGGT
>>> rc = myseq.get_reverse_complement()
>>> rc.name
'revcomp_of_my_sequence'
>>> rc.seq
b'GTAACGGT'





Writing to FASTA file


To write Sequence objects into a FASTA file, open a text file for writing,
then call write_to_fasta_file for each sequence, providing the open
file handle as only argument, and close the file:

>>> my_fasta_file = open( "test.fa", "w" )
>>> myseq.write_to_fasta_file( my_fasta_file )
>>> my_fasta_file.close()





To read from a FASTA file, see class FastaReader.





	Extended UIPAC letters

	These are not (yet) supported. A sequence should only contain A, C, G, T
and N.



Counting bases


For read quality assessment, it is often helpful to count the proportions
of called bases, stratified by position in the read. To obtain such counts,
the following idiom is helpful:

>>> import numpy
>>> reads = HTSeq.FastqReader( "yeast_RNASeq_excerpt_sequence.txt" )
>>> counts = numpy.zeros( ( 36, 5 ), numpy.int )
>>> for read in reads:
...     read.add_bases_to_count_array( counts )
>>> counts        
array([[16194,  2048,  4017,  2683,    57],
       [10716,  3321,  4933,  6029,     0],
       [ 7816,  5024,  5946,  6213,     0],
       ...
       [ 8526,  4812,  5460,  6197,     4],
       [ 8088,  4915,  5531,  6464,     1]])





Here, a two-dimensional numpy array of integer zeroes is defined and then
passed to the add_bases_to_count_array method of each Sequence object obtained
from the Fastq file. The method add_bases_to_count_array adds, for each base,
a one to one of the array elements such that, in the end, the 36 rows of the array
correspond to the positions in the reads (all of length 36 bp in this example), and
the 5 columns correspond to the base letters ‘A’, ‘C’, ‘G’, ‘T’, and ‘N’, as given by
the constant base_to_columns


	
base_to_column = { 'A': 0, 'C': 1, 'G': 2, 'T': 3, 'N': 4 }

	



Hence, we can get the proportion of ‘C’s in each position as follows:

>>> counts = numpy.array( counts, numpy.float ) 
>>> #counts[ : , HTSeq.base_to_column['C'] ] / counts.sum(1)
array([ 0.08192328,  0.13284531,  0.20096804,  0.16872675,  0.21200848,
        ...
        0.18560742,  0.19236769,  0.19088764,  0.17872715,  0.1924877 ,
        0.19660786])





(Here, we first convert the count array to type float to allow to proper
division, and then divide the second column (HTSeq.base_to_column['C']) by
the row-wise sums (counts.sum(1); the 1 requests summing along rows).)




Trimming reads



	
Sequence.trim_left_end(pattern, mismatch_prop = 0.)

	
Sequence.trim_right_end(pattern, mismatch_prop = 0.)

	



In high-throughput sequencing, reads are sometimes contaminated with adapters
or sequencing primers. These function take a pattern and attempt to match either
the right end of the pattern to the left end of the sequence (trim_left_end)
or the left end of the pattern to the right end of the sequence (trim_right_end).
The match is the trimmed off.

Here is an example:

>>> seq2 = HTSeq.Sequence( b"ACGTAAAGCGGTACGGGGGG" )
>>> left_seq = HTSeq.Sequence( b"CCCACG" )
>>> print(seq2.trim_left_end( left_seq ))
TAAAGCGGTACGGGGGG





The right end of the pattern (“ACG”) matched the left end of the sequence, and
has hence been trimmed off.

The optional argument mismatch_prop is the number of allowed mismatches as
proportion of the length of the match:

>>> right_seq = HTSeq.Sequence( b"GGGTGGG" )
>>> print(seq2.trim_right_end( right_seq ))
ACGTAAAGCGGTACGGG
>>> print(seq2.trim_right_end( right_seq, 1/6. ))
ACGTAAAGCGGTAC
>>> print(seq2.trim_right_end( right_seq, 1/7. ))
ACGTAAAGCGGTACGGG





Here, if we allow at least one mismatch per six bases, the whole pattern gets cut off.

If you have quality information, you can use this, too, to specify the allowed amount
of mismatch. See SequenceWithQualities.trim_left_end_with_quals() and
SequenceWithQualities.trim_left_end_with_quals().







SequenceWithQualities

The sequences obtained from high-throughput sequencing devices (in the following also
referred to as “reads”) typically come with base-call quality scores, which indicate
how sure the software was that the right base was called. The class SequenceWithQualities represents such reads.

SequenceWithQualities is a daughter class of Sequence and inherits all its features.

Instantiation



	
class HTSeq.SequenceWithQualities(seq, name qualstr, qualscale="phred")

	



A SequenceWithQualities can be instantiated as a Sequence, but now with
a third argument, the quality string:

>>> myread = HTSeq.SequenceWithQualities( b"ACGACTGACC", "my_read", b"IICGAB##(!" )





The quality string is interpreted as Sanger-encoded string of Phred values, as
defined in the FASTQ format specification [http://maq.sourceforge.net/fastq.shtml], i.e., each letter in the quality
string corresponds to one base in the sequence and if the value 33 is subtracted
from the quality characters ASCII value, the Phred score is obtained.

The Phred scores can then be found in the slot qual:

>>> myread.qualstr
b'IICGAB##(!'
>>> myread.qual
array([40, 40, 34, 38, 32, 33,  2,  2,  7,  0], dtype=uint8)





If the quality string follows the Solexa FASTQ specification, the value to be
subtracted is not 33 but 64. If you pass a quality string in this format, set
qualscale="solexa".

Prior to version 1.3, the SolexaPipeline software used a yet another style of encoding
quality string. If you want to use this one, specify qualscale="solexa-old"




Attributes


As for Sequence objects, there are attributes name, seq, and descr.

Furthermore, we now have the attributes qual and qualstr, already mentioned
above.


	
SequenceWithQuality.qual

	qual is a numpy array of data type integer, with as many elements
as there are bases. Each element is a Phred score. A Phred score S is
defined to mean that the base caller estimates the probability p of the
base call being wrong as p = -log10 ( S/10 ).

Note that qual is always the probability, even if the solexa-old quality
string format has been used, which encodes the odds p ( 1 - p ), i.e., in that case,
the odds are converted to probabilities.






	
SequenceWithQuality.qualstr

	The quality string according to Sanger Phred encoding. In case the quality was
originally given in solexa or solexa-old format, it is converted:

>>> read2 = HTSeq.SequenceWithQualities( b"ACGACTGACC", "my_read", b"hhgddaZVFF", "solexa" )
>>> read2.qual
array([40, 40, 39, 36, 36, 33, 26, 22,  6,  6], dtype=uint8)
>>> read2.qualstr
b"IIHEEB;7''"












Writing to FASTQ file



	
SequenceWithQuality.write_to_fastq_file(fasta_file)

	



To write SequenceWithQualities objects into a FASTQ file, open a text file for writing,
then call write_to_fastq_file for each sequence, providing the open
file handle as only argument, and close the file:

>>> my_fastq_file = open( "test.fq", "w" )
>>> myread.write_to_fastq_file( my_fastq_file )
>>> my_fastq_file.close()





Note that the reads will always be written with quality strings in Sanger encoding.

To read from a FASTQ file, see class FastqReader.




Counting quality values


Similar to Sequence.add_bases_to_count_array(), this method counts the
occuring quality values stratified by position. This then allows to calculate
average qualities as well as histograms.

Here is a usage example:

>>> import numpy       
>>> reads = HTSeq.FastqReader( "yeast_RNASeq_excerpt_sequence.txt", "solexa" )
>>> counts = numpy.zeros( ( 36, 41 ), numpy.int )
>>> for read in reads:
...    read.add_qual_to_count_array( counts )
>>> #counts
array([[   0,    0,   64, ...,    0,    0,    0],
       [   0,    0,   93, ...,    0,    0,    0],
       ...,
       [   0,    0, 2445, ...,    0,    0,    0],
       [   0,    0, 2920, ...,    0,    0,    0]])





The value counts[i,j] is then the number of reads for which the base at
position i hat the  quality scores j. According to the Fastq standard,
quality scores range from 0 to 40; hence, the array is initialized to have
41 columns.




Trimming reads



	
SequenceWithQualities.trim_left_end_with_quals(pattern, max_mm_qual = 5)

	
SequenceWithQualities.trim_right_end_with_quals(pattern, max_mm_qual = 5)

	



These methods work as Sequence.trim_left_end() and Sequence.trim_right_end()
(which are, of course, avilable for SequenceWithQualities objects, too). The difference
is, that for the _with_quals trimming methods, the maximum amount of allowed mismatch is
specified as the maximum value that the sum of the quality scores of the mismatched bases
may take.

TODO: Add example







FastaReader

The FastaReader class allows to read and parse a FASTA file. It can generates an
iterator of Sequence objects or a faster, simpler iterator of string tuples.


	
class HTSeq.FastaReader(filename_or_sequence, raw_iterator=False)

	As daughter class of FileOrSequence, FastaReader can be instantiated
with either a filename, or with a list of sequences. See FileOrSequence for details.






	Example 1

	The typical use for FastaReader is to go through a FASTA file and do something with
each sequence, e.g.:

>>> for s in HTSeq.FastaReader( "fastaEx.fa" ):
...     print("Sequence '%s' has length %d." % ( s.name, len(s) ))
Sequence 'sequence1' has length 72.
Sequence 'sequence2' has length 70.







	Example 2

	Often, one might to read a whole Fasta file into memory to access it as a dict.
This is a good idiom for this purpose:

>>> sequences = dict( (s.name, s) for s in HTSeq.FastaReader("fastaEx.fa") )
>>> sequences["sequence1"].seq
b'AGTACGTAGTCGCTGCTGCTACGGGCGCTAGCTAGTACGTCACGACGTAGATGCTAGCTGACTAAACGATGC'







	Example 3

	One can use raw_iterator=True to maximize parsing speed at the expense of
not getting a nice Sequence instance but rather only a tuple:

>>> sequences = dict( (s[1], s[0]) for s in HTSeq.FastaReader("fastaEx.fa", raw_iterator=True) )
>>> sequences["sequence1"]
'AGTACGTAGTCGCTGCTGCTACGGGCGCTAGCTAGTACGTCACGACGTAGATGCTAGCTGACTAAACGATGC'












FastqReader

The FastqReader class works similar to FastaReader. It reads a Fastq file
and generates an iterator over SequenceWithQualities objects or a faster,
simpler iterator of tuples.


	
class HTSeq.FastqReader(filename_or_sequence, qual_scale="phred", raw_iterator=False)

	As daughter class of FileOrSequence, FastaReader can be instantiated
with either a filename, or with a sequence. See FileOrSequence for details.

By default, the quality strings are assumed to be encoded according to the
Sanger/Phred standard. You may alternatively specify "solexa" or "solexa-old"
(see SequenceWithQuality).











          

      

      

    

  

    
      
          
            
  
Genomic intervals and genomic arrays


GenomicInterval

A genomic interval is a consecutive stretch on a genomic sequence such as a chromosome.
It is represented by a GenomicInterval object.


	Instantiation

	
	
class HTSeq.GenomicInterval(chrom, start, end, strand)

	
	chrom (string)

	The name of a sequence (i.e., chromosome, contig, or the like).

	start  (int)

	The start of the interval. Even on the reverse strand,
this is always the smaller of the two values ‘start’ and ‘end’.
Note that all positions should be given and interpreted as 0-based value!

	end  (int)

	The end of the interval. Following Python convention for
ranges, this in one more than the coordinate of the last base
that is considered part of the sequence.

	strand  (string)

	The strand, as a single character, '+', '-', or '.'.
'.' indicates that the strand is irrelevant.









	Representation and string conversion

	The class’s __str__ method gives a spcae-saving description of the
interval, the __repr__ method is a bit more verbose:

>>> iv = HTSeq.GenomicInterval( "chr3", 123203, 127245, "+" )
>>> print(iv)
chr3:[123203,127245)/+
>>> iv
<GenomicInterval object 'chr3', [123203,127245), strand '+'>









Attributes



	
GenomicInterval.chrom

	
GenomicInterval.start

	
GenomicInterval.end

	
GenomicInterval.strand

	as above






	
GenomicInterval.start_d

	The “directional start” position. This is the position of the
first base of the interval, taking the strand into account. Hence,
this is the same as start except when strand == '-', in which
case it is end-1.

Note that if you set start_d, both start and end are changed,
such that the interval gets the requested new directional start and its
length stays unchanged.






	
GenomicInterval.end_d

	The “directional end”: The same as end, unless strand=='-',
in which case it is start-1. This convention allows to go from
start_d to end_d (not including, as usual in Python, the last
value) and get all bases in “reading” direction.

end_d is not writable.






	
GenomicInterval.length

	The length is calculated as end - start. If you set the length,
start_d will be preserved, i.e., end is changed,
unless the strand is -, in which case start is changed.






	
GenomicInterval.start_as_pos

	
GenomicInterval.end_as_pos

	
GenomicInterval.start_d_as_pos

	
GenomicInterval.end_d_as_pos

	These attributes return GenomicPosition objects referring to the
respective positions.









	Directional instantiation

	
	
HTSeq.GenomicInterval_from_directional(chrom, start_d, length, strand=".")

	This function allows to create a new GenomicInterval object specifying
directional start and length instead of start and end.







	Methods

	
	
GenomicInterval.is_contained_in(iv)

	
GenomicInterval.contains(iv)

	
GenomicInterval.overlaps(iv)

	These methods test whether the object is contained in, contains, or overlaps
the second GenomicInterval object iv.

For any of of these conditions
to be true, the start and end values have to be appropriate, and furthermore,
the chrom values have to be equal and the strand values consistent. The latter
means that the strands have to be the same if both intervals have strand
information. However, if at least one of the objects has strand == '.',
the strand information of the other object is disregarded.

Note that all three methods return True for identical intervals.






	
GenomicInterval.xrange(step = 1)

	
GenomicInterval.xrange_d(step = 1)

	These methods yield iterators of :class:GenomicPosition objects from
start to end (or, for xrange_d from start_d to end_d).






	
GenomicInterval.extend_to_include(iv)

	Change the object’s start end end values such that iv becomes contained.









Special methods


GenomicInterval implements the methods necessary for


	obtaining a copy of the object (the copy method)

	pickling the object

	representing the object and converting it to a string (see above)

	comparing two GenomicIntervals for equality and inequality

	hashing the object









GenomicPosition

A GenomicPosition represents the position of a single base or base pair, i.e., it is
an interval of length 1, and hence, the class is a subclass of :class:GenomicInterval.


	
class HTSeq.GenomicPosition(chrom, pos, strand='.')

	The initialisation is as for a :class:GenomicInterval object, but no length argument is passed.





Attributes



	
HTSeq.pos

	pos is an alias for GenomicInterval.start_d.





All other attributes of GenomicInterval are still exposed. Refrain from
using them, unless you want to use the object as an interval, not as a position.
Some of them are now read-only to prevent the length to be changed.







GenomicArray

A GenomicArray is a collection of ChromVector objects, either one or two
for each chromosome of a genome. It allows to access the data in these
transparently via GenomicInterval objects.

Note: ``GenomicArray``’s interface changed significantly in version 0.5.0. Please
see the Version History page.


	Instantiation

	
	
class HTSeq.GenomicArray(chroms, stranded=True, typecode='d', storage='step', memmap_dir='')

	



Creates a GenomicArray.

If chroms is a list of chromosome names,  two (or one, see below) ChromVector
objects for each chromosome are created, with start index 0 and indefinite
length. If chroms is a dict, the keys are used for the chromosome names
and the values should be the lengths of the chromosome, i.e., the ChromVectors
index ranges are then from 0 to these lengths. (Note that the term chromosome
is used only for convenience. Of course, you can as well specify contig IDs
or the like.) Finally, if chroms is the string "auto", the GenomicArray
is created without any chromosomes but whenever the user attempts to assign a
value to a yet unknown chromosome, a new one is automatically created with
GenomicArray.add_chrom().

If stranded is True, two StepVector objects are created for each chromosome,
one for the ‘+’ and one for the ‘-‘ strand. For stranded == False, only one
StepVector per chromosome is used. In that case, the strand argument of
all GenomicInterval objects that are used later to specify regions in the
GenomicArray are ignored.

The typecode determines the data type and is as in numpy, i.e.:



	'd' for float values (C type ‘double’),

	'i' for int values,

	'b' for Boolean values,

	'O' for arbitrary Python objects as value.






The storage mode determines how the ChromVectors store the data internally:



	mode 'step': A step vector is used. This is the default and useful
for large amounts of data which may stay constant along a range of indices.
Each such step is stored internally as a node in a red-black tree.

	mode 'ndarray': A 1D numpy array is used internally. This is useful
if the data changes a lot, and steps are hence inefficient. Using this mode
requires that chromosome lengths are specified.

	mode memmap: This is useful for large amounts of data with very short
steps, where step is inefficient, but a numpy vectors would not fit
into memory. A numpy memmap is used that stores the whole vector in a
file on disk and transparently maps into memory windows of the data. This
mode requires chromosome lengths, and specification of a directory, via
the memmap_dir argument, to store the temporary files in. It is not
suitable for type code O.










Attributes



	
GenomicArray.stranded

	
GenomicArray.typecode

	see above






	
GenomicArray.chrom_vectors

	a dict of dicts of ChromVector objects, using the chromosome
names, and the strand as keys:

.. doctest::





>>> ga = HTSeq.GenomicArray( [ "chr1", "chr2" ], stranded=False )
>>> sorted(ga.chrom_vectors.items()) 
[('chr1', {'.': <ChromVector object, chr1:[0,Inf)/., step>}),
 ('chr2', {'.': <ChromVector object, chr2:[0,Inf)/., step>})]
>>> ga = HTSeq.GenomicArray( [ "chr1", "chr2" ], stranded=True )
>>> sorted([(st[0], sorted(st[1].items())) for st in ga.chrom_vectors.items()])  
[('chr1', [('+', <ChromVector object, chr1:[0,Inf)/+, step>),
           ('-', <ChromVector object, chr1:[0,Inf)/-, step>)]),
 ('chr2', [('+', <ChromVector object, chr2:[0,Inf)/+, step>),
           ('-', <ChromVector object, chr2:[0,Inf)/-, step>)])]










	
GenomicArray.auto_add_chroms

	A boolean. This attribute is set to True if the GenomicArray was created with the "auto"
arguments for the chroms parameter. If it is true, an new chromosome
will be added whenever needed.









	Data access

	To access the data, use :class:GenomicInterval objects.

To set an single position or an interval, use:

>>> ga[ HTSeq.GenomicPosition( "chr1", 100, "+" ) ] = 7
>>> ga[ HTSeq.GenomicInterval( "chr1", 250, 400, "+" ) ] = 20





To read a single position:

>>> ga[ HTSeq.GenomicPosition( "chr1", 300, "+" ) ]
20.0






	
ChromVector.steps(self)

	



To read an interval, use a GenomicInterval object as index, and
obtain a ChromVector with a sub-view:

>>> iv = HTSeq.GenomicInterval( "chr1", 250, 450, "+" )
>>> v = ga[ iv ]
>>> v
<ChromVector object, chr1:[250,450)/+, step>
>>> list( v.steps() )  
[(<GenomicInterval object 'chr1', [250,400), strand '+'>, 20.0),
 (<GenomicInterval object 'chr1', [400,450), strand '+'>, 0.0)]





Note that you get ( interval, value ) pairs , i.e., you can conveniently cycle
through them with:

>>> for iv, value in ga[ iv ].steps():
...    print(iv, value)
chr1:[250,400)/+ 20.0
chr1:[400,450)/+ 0.0






	
GenomicArray.steps(self)

	You can get all steps from all chromosomes by calling the arrays own steps
method.









Modifying values


ChromVector implements the __iadd__ method. Hence you can use +=:

>>> ga[ HTSeq.GenomicInterval( "chr1", 290, 310, "+" ) ] += 1000
>>> list( ga[ HTSeq.GenomicInterval( "chr1", 250, 450, "+" ) ].steps() )  
[(<GenomicInterval object 'chr1', [250,290), strand '+'>, 20.0),
 (<GenomicInterval object 'chr1', [290,310), strand '+'>, 1020.0),
 (<GenomicInterval object 'chr1', [310,400), strand '+'>, 20.0),
 (<GenomicInterval object 'chr1', [400,450), strand '+'>, 0.0)]





To do manipulations other than additions, use Chromvector’s apply method:


	
ChromVector.apply(func)

	>>> ga[ HTSeq.GenomicInterval( "chr1", 290, 300, "+" ) ].apply( lambda x: x * 2 )
>>> list( ga[ HTSeq.GenomicInterval( "chr1", 250, 450, "+" ) ].steps() ) 
[(<GenomicInterval object 'chr1', [250,290), strand '+'>, 20.0),
 (<GenomicInterval object 'chr1', [290,300), strand '+'>, 2040.0),
 (<GenomicInterval object 'chr1', [300,310), strand '+'>, 1020.0),
 (<GenomicInterval object 'chr1', [310,400), strand '+'>, 20.0),
 (<GenomicInterval object 'chr1', [400,450), strand '+'>, 0.0)]













	Writing to a file

	
	
GenomicArray.write_bedgraph_file(file_or_filename, strand=".", track_options="")

	Write out the data in the GenomicArray as a BedGraph [http://genome.ucsc.edu/goldenPath/help/bedgraph.html] track. This is a subtype of the Wiggle [http://genome.ucsc.edu/goldenPath/help/wiggle.html] format
(i.e., the file extension is usually ”.wig”) and such files can be conveniently viewed in
a genome browser, e.g., with IGB [http://igb.bioviz.org/].

This works only for numerical data, i.e., datatype 'i' or 'd'. As a bedgraph track
cannot store strand information, you have to specify either '+' or '-' as the
strand argument if your GenomicArray is stranded (stranded==True). Typically, you
will write two wiggle files, one for each strand, and display them together.







	Adding a chromosome

	
	
GenomicArray.add_chrom(chrom, length=sys.maxint, start_index=0)

	Adds step vector(s) for a further chromosome. This is useful if you do not have a full
list of chromosome names yet when instantiating the GenomicArray.












GenomicArrayOfSets

A GenomicArrayOfSets is a sub-class of GenomicArray that deal with the common
special case of overlapping features. This is best explained by an example: Let’s say, we
have two features, "geneA" and "geneB", that are at overlapping positions:

>>> ivA = HTSeq.GenomicInterval( "chr1", 100, 300, "." )
>>> ivB = HTSeq.GenomicInterval( "chr1", 200, 400, "." )





In a GenomicArrayOfSets, the value of each step is a set and so can hold more than
one object. The __iadd__ method is overloaded to add elements to the sets:

>>> gas = HTSeq.GenomicArrayOfSets( ["chr1", "chr2"], stranded=False )
>>> gas[ivA] += "gene A"
>>> gas[ivB] += "gene B"
>>> [(st[0], sorted(st[1])) for st in gas[ HTSeq.GenomicInterval( "chr1", 0, 500, "." ) ].steps()] 
[(<GenomicInterval object 'chr1', [0,100), strand '.'>,   []),
 (<GenomicInterval object 'chr1', [100,200), strand '.'>, ['gene A']),
 (<GenomicInterval object 'chr1', [200,300), strand '.'>, ['gene A', 'gene B']),
 (<GenomicInterval object 'chr1', [300,400), strand '.'>, ['gene B']),
 (<GenomicInterval object 'chr1', [400,500), strand '.'>, [])]






	
class HTSeq.GenomicArrayOfSets(chroms, stranded = True)

	Instantiation is as in GenomicArray, only that datatype is always 'O'.











          

      

      

    

  

    
      
          
            
  
Read alignments


Concepts

There are a large number of different tools to align short reads to a reference. Most of
them use their own output format, even though the SAM format [http://samtools.sourceforge.net/SAM1.pdf] seems to become the common
standard now that many of the newer tools use it.

HTSeq aims to offer a uniform way to analyse alignments from different tools. To this end,
for all supported alignment formats a parse class is offered that reads an alignment file
and generates an iterator over the individual alignment records. These are represented as
objects of a sub-class of Alignment and hence all offer a common interface.

So, you can easily write code that should work for all aligner formats. As a simple example,
consider this function that counts the number of reads falling on each chromosome:

>>> import collections
>>> def count_in_chroms( alignments ):
...     counts = collections.defaultdict( lambda: 0 )
...     for almnt in alignments:
...         if almnt.aligned:
...             counts[ almnt.iv.chrom ] += 1
...     return counts





If you have a SAM file (e.g., from BWA or BowTie), you can call it with:

>>> sorted(count_in_chroms( HTSeq.SAM_Reader( "yeast_RNASeq_excerpt.sam" ) ).items()) 
[('2-micron', 46), ('I', 362), ('II', 1724), ('III', 365), ('IV', 3015),
 ('IX', 648), ('V', 999), ('VI', 332), ('VII', 2316), ('VIII', 932),
 ('X', 1129), ('XI', 1170), ('XII', 4215), ('XIII', 1471), ('XIV', 1297),
 ('XV', 2133), ('XVI', 1509)]





If, however, you have done your alignment with Eland from the SolexaPipeline, which
uses the “Solexa export” format, you can use the same function, only using SolexaExportReader
instead of SAM_Reader:

>>> count_in_chroms( HTSeq.SolexaExportReader( "mydata_export.txt" ) ) 





Both class generate iterators of similar objects. On the other hand, some formats contain more information
and then the Alignment objects from these contain additional fields.




Parser classes

Depending on the format of your alignment file, choose from the following parsers:


	
class HTSeq.BowtieReader(filename_or_sequence)

	
class HTSeq.SAM_Reader(filename_or_sequence)

	
class HTSeq.BAM_Reader(filename_or_sequence)

	
class HTSeq.SolexaExportReader(filename_or_sequence)

	



All of these are derived from FileOrSequence. When asked for an iterator,
they yield Alignment objects of types BowtieAlignment, SAM_Alignment,
or SolexaExportAlignment. See below for their properties.

Adding support for a new format is very easy. Ask me if you need something and
I can probably add it right-away.
Alternatively, you can convert your format to the SAM format. The SAMtools [http://samtools.sourceforge.net/]
contain Perl skripts to convert nearly all common formats.



	
SAM_Reader.peek( num = 1 ):

	Peek into a SAM file or connection, reporting the first num records.
If you then call an iterator on the SAM_Reader, the record will
be yielded again.











Alignment and AlignmentWithSequenceReversal


	
class HTSeq.Alignment(read, iv)

	This is the base class of all Alignment classes. Any class derived
from Alignment has at least the following attributes:


	
read

	The read. An object of type SequenceWithQuality. See there for the sub-attributes.

Note that some aligners store the reverse complement of the read if it was
aligned to the ‘-‘ strand. In this case, the parser revers-complements the read
again, so that you can be sure that the read is always presented as it was sequenced
(see also AlignmentWithSequenceReversal).






	
aligned

	A boolean. Some formats (e.g., those of Maq and Bowtie) contain only aligned
reads (and the aligner collects the
unaligned reads in a seperate FASTQ file if requested). For these formats, aligned
is always True. Other formats (e.g., SAM and Solexa Export) list all reads, including those which could
not be aligned. In that case, check aligned to see whether the read has an
alignment.






	
iv

	An object of class GenomicInterval or None.

The genomic interval to which the read was aligned (or None if aligned=False).
See GenomicInterval for the sub-attributes. Note that different formats
have different conventions for genomic coordinates. The parser class takes care
of normalizing this, so that iv always adheres to the conventions outlined
in :class:GenomicInterval. Especially, all coordinates are counted from zero, not one.






	
paired_end

	A boolean. True if the read stems from a paired-end sequencing run. (Note: At the moment
paired-end data is only supported for the SAM format.)










	
class HTSeq.AlignmentWithSequenceReversal(read_as_aligned, iv)

	Some aligners store the reverse complement of the read if it was
aligned to the ‘-‘ strand. For these aligners, the Alignment class is derived
from AlignmentWithSequenceReversal, which undoes the reverse-complement if necessary
to ensure that the read attribute always presents the read in the ordder in which
it was sequenced.

To get better performance, this is done via lazy evaluation, i.e., the
reverse complement is only calculated when the read attribute is accessed
for the first time. The original read as read from the file is stored as well. You
can access both with these attributes:


	
read_as_aligned

	A SequenceWithQualities object. The read as it was found in the file.






	
read_as_sequenced

	A SequenceWithQualities object. The read as it was sequenced,
i.e., an alias for Alignment.read.












Format-specific Alignment classes

Note: All format-specific Alignment classes take a string as argument for their constructor. This
is a line from the alignment file describing the alignment and is passed in by the corresponding
Reader object. As you do not create Alignment objects yourself but get them from the Reader
object you typically never call the constructor yourself.


	
class HTSeq.BowtieAlignment(bowtie_line)

	BowtieAlignment objects contain all the attributes from Alignment and
AlignmentWithSequenceReversal, and, in addition, these:


	
reserved

	A string. The reserved field from the Bowtie output file. See the Bowtie manual for its meaning.






	
substitutions

	A string. The substitutions string that describes mismatches in the format 22:A>C, 25:C>T
to indicate a change from A to C in position 22 and from C to T in position 25.
No further parsing for this is offered yet.










	
class HTSeq.SAM_Alignment(line)

	BowtieAlignment objects contain all the attributes from Alignment and
AlignmentWithSequenceReversal, and, in addition, these:


	
aQual

	An int. The alignment quality score in Phread style encoding.






	
cigar

	A list of CigarOperation objects, as parsed from the extended CIGAR string. See
CigarOperation for details.






	
not_primary_alignment

	A boolean. Whether the alignment is secondary. (See SAM format reference, flag 0x0100. See also supplementary alignments, flag 0x0800.)






	
failed_platform_qc

	A boolean. Whether the read failed a platform quality check. (See SAM format reference, flag 0x0200.)






	
pcr_or_optical_duplicate

	A boolean. Whether the read is a PCR or optical duplicate. (See SAM format reference, flag 0x0400.)






	
supplementary

	A boolean. Whether the alignment is supplementary. (See SAM format reference, flag 0x0800.)





These methods access the optional fields:


	
optional_field(tag)

	Returns the optional field tag. See SAM format reference for the defined tags (which
are two-letter strings).






	
optional_fields()

	Returns a dict with all optional fields, using their tags as keys.





This method is useful to write out a SAM file:


	
get_sam_line()

	Constructs a SAM line to describe the alignment, which is returned as a string.





Paired-end support


SAM_Alignment objects can represent paired-end data. If Alignment.paired_end is True,
the following fields may be used:


	
mate_aligned

	A boolean. Whether the mate was aligned






	
pe_which

	A string. Takes one of the values “first”, “second”, “unknown” and “not_paired_end”, to indicate
whether the read stems from the first or second pass of the paired-end sequencing.






	
proper_pair

	Boolean. Whether the mates form a proper pair. (See SAM format reference, flag 0x0002.)






	
mate_start

	A GenomicPosition object. The start (i.e., left-most position) of the mate’s alignment.
Note that mate_start.strand is opposite to iv.strand for proper pairs.






	
inferred_insert_size

	An int. The inferred size of the insert between the reads.













	
HTSeq.pair_SAM_alignments(alnmt_seq)

	This function takes a generator of SAM_Alignment objects (e.g.,
a SAM_Reader object) and yields a sequence of pairs of alignments.
A typical use may be:

for first, second in HTSeq.SAM_Reader( "some_paired_end_data.sam" ):
    print("Pair, consisting of")
    print("   ", first)
    print("   ", second)





Here, first and second are SAM_Alignment objects, representing two reads
of the same cluster. For this to work, the SAM file has to be arranged such that
paired reads are always in adjacent lines. As the SAM format requires that the query names
(first column of the SAM file) is the same for mate pairs, this arrangement can easily be
achieved by sorting the SAM file lines lexicographically.

Special care is taken to properly pair up multiple alignment lines for the same read.

In the SAM format, alignments for paired-end reads must be reported in paired alignment
records. If the mate of an alignment record is missing, this fact is counted and, at the
end, a warning stating the number of such violating reads is issued. The singleton
alignments are yielded as pairs, with the alignment in the first or second
element of the pair (depending on the sequencing pass it originates from) and the other
element is set to None.






	
HTSeq.pair_SAM_alignments_with_buffer(alignments, max_buffer_size=3000000)

	This function pairs up reads in a SAM file, in the same manner as pair_SAM_alignments()
but does not require that mated alignments appear in adjacent records, i.e., the SAM
file does not need to be sorted by read name beforehand. Rather, once the first alignment
of a pair is encountered, it is stored in a buffer until its mated alignment is encountered,
and then both are yielded together as pair. It is recommended that the data should be
sorted by position, because then, mated alignments will typicalle not be too distant from
each other in the file and hence only a limited number of alignments have to be held
concurrently in the buffer, thereby reducing memory needs. To avoid overflowing the
system’s memory, the function stops and raises an exception once the number of
alignment records held in the buffer exceeds max_buffer_size.






	
class HTSeq.SolexaExportAlignment(line)

	SolexaExportAlignment objects contain all the attributes from Alignment and
AlignmentWithSequenceReversal, and, in addition, these:


	
passed_filter

	A boolean. Whether the read passed the chastity filter. If passed_filter==False, then
aligned==False.






	
nomatch_code

	A string. For aligned==False, a code indicating why no match could be found. See the
description of the 11th column of the Solexa Export format in the SolexaPipeline
manual for the meaning of the codes. For aligned==True, nomatch_code==None.












Multiple alignments


	
HTSeq.bundle_multiple_alignments(sequence_of_alignments)

	



Some alignment programs, e.g., Bowtie, can output multiple alignments,
i.e., the same read is reported consecutively with different alignments.
This function takes an iterator over alignments (as provided by one of the
alignment Reader classes) and bundles consecutive alignments regarding the
same read to a list of Alignment objects and returns an iterator over these.




CIGAR strings

When reading in SAM files, the CIGAR string is parsed and stored as a list of
CigarOperation objects. For example, assume, a 36 bp read has been aligned
to the ‘+’ strand of chromosome ‘chr3’, extending to the right from position
1000, with the CIGAR string "20M6I10M". The function :function:parse_cigar
spells out what this means:

>>> HTSeq.parse_cigar( "20M6I10M", 1000, "chr2", "+" )  
[< CigarOperation: 20 base(s) matched on ref iv chr2:[1000,1020)/+, query iv [0,20) >,
 < CigarOperation: 6 base(s) inserted on ref iv chr2:[1020,1020)/+, query iv [20,26) >,
 < CigarOperation: 10 base(s) matched on ref iv chr2:[1020,1030)/+, query iv [26,36) >]





We can see that the map includes an insert. Hence, the affected coordinates run from 1000
to 1030 on the reference (i.e., the chromosome) but only from 0 to 36 on the query (i.e., the read).

We can convenient access to the parsed data by looking at the attributes of the three CigarOperation
objects in the list.


	
class HTSeq.CigarOperation(...)

	The available attributes are:


	
type

	The type of the operation. One of the letters M, I, D, N, S, H, or P. Use
the dict cigar_operation_names to transform this to names:

>>> sorted(HTSeq.cigar_operation_names.items())    
[('=', 'sequence-matched'),
 ('D', 'deleted'),
 ('H', 'hard-clipped'),
 ('I', 'inserted'),
 ('M', 'matched'),
 ('N', 'skipped'),
 ('P', 'padded'),
 ('S', 'soft-clipped'),
 ('X', 'sequence-mismatched')]










	
size

	The number of affected bases, an int.






	
ref_iv

	A GenomicInterval specifying the affected bases on the reference. In case
of an insertion, this is a zero-length interval.






	
query_from

	
query_to

	Two ints, specifying the affected bases on the query (the read). In case of a
deletion, query_from == query_to.






	
check()

	Checks the CigarOperation object for consitency. Returns a boolean.















          

      

      

    

  

    
      
          
            
  
Features

The easiest way to work with annotation is to use GenomicArray with typecode=='O'
or GenomicArrayOfSets. If you have your annotation in a flat file, with each
line describing a feature and giving its coordinates, you can read in the file line for line,
parse it (see the standard Python module csv), use the information on chromosome, start,
end and strand to create a GenomicInterval object and then store the data from the line
in the genomic array at the place indicated by the genomic interval.

For example, if you have data in a tab-separated file as follows:

>>> for line in open( "feature_list.txt" ):  
...     print(line)
chr2  100    300     +       "gene A"
chr2 200     400     -       "gene B"
chr3 150     270     +       "gene C"





Then, you could load this information as follows:

>>> import csv
>>> genes = HTSeq.GenomicArray( [ "chr1", "chr2", "chr3" ], typecode='O' )
>>> for (chrom, start, end, strand, name) in \
...        csv.reader( open("feature_list.txt"), delimiter="\t" ):
...     iv = HTSeq.GenomicInterval( chrom, int(start), int(end), strand )
...     genes[ iv ] = name





Now, to see whether there is a feature at a given GenomicPosition, you just query the
genomic array:

>>> print(genes[ HTSeq.GenomicPosition( "chr3", 100, "+" ) ])
None
>>> print(genes[ HTSeq.GenomicPosition( "chr3", 200, "+" ) ])
gene C





See GenomicArray and GenomicArrayOfSets for more sophisticated use.


GFF_Reader and GenomicFeature

One of the most common format for annotation data is GFF [http://www.sanger.ac.uk/resources/software/gff/spec.html] (which includes GTF [http://mblab.wustl.edu/GTF22.html] as
a sub-type). Hence, a parse for GFF files is included in HTSeq.

As usual, there is a parser class, called GFF_Reader, that can generate an
iterator of objects describing the features. These objects are of type :class`GenomicFeature`
and each describes one line of a GFF file. See Section A tour through HTSeq for an example.


	
class HTSeq.GFF_Reader(filename_or_sequence, end_included=True)

	As a subclass of FileOrSequence, GFF_Reader can be initialized either
with a file name or with an open file or another sequence of lines.

When requesting an iterator, it generates objects of type GenomicFeature.

The GFF specification is unclear on whether the end coordinate marks the last
base-pair of the feature (closed intervals, end_included=True) or the one
after (half-open intervals, end_included=False). The default, True, is
correct for Ensembl GTF files. If in doubt, look for a CDS or stop_codon
feature in you GFF file. Its length should be divisible by 3. If “end-start”
is divisible by 3, you need end_included=False. If “end-start+1” is
divisible by 3, you need end_included=True.

GFF_Reader will convert the coordinates from GFF standard (1-based, end
maybe included) to HTSeq standard (0-base, end not included) by subtracting
1 from the start position, and, for end_included=True, also subtract 1 from
the end position.



	
metadata

	GFF_Reader skips all lines starting with a single ‘#’ as this marks
a comment. However, lines starying with ‘##’ contain meta data (at least
accoring to the Sanger Institute’s version of the GFF standard.) Such meta
data has the format ##key value. When a metadata line is encountered,
it is added to the metadata dictionary.













	
class HTSeq.GenomicFeature(name, type_, interval)

	A GenomicFeature object always contains the following attributes:



	
name

	A name of ID for the feature. As the GFF format does not have a dedicated
field for this, the value of the first attribute in the attributes column is
assumed to be the name of ID.






	
type

	The type of the feature, i.e., a string like "exon" or "gene". For GFF
files, the 3rd column (feature) is taken as the type.






	
interval

	The interval that the feature covers on the genome. For GFF files, this information is taken
from the first (seqname), the forth (start), the fifth (end), and the seventh (strand)
column.








When created by a GFF_Reader object, the following attributes are also present, with the information
from the remaining GFF columns:



	
source

	The 2nd column, denoted source in the specification, and intended to specify the
data source.






	
frame

	The 8th column (frame), giving the reading frame in case of a coding feature. Its value
is an integer (0, 1, or 2), or the string '.' in case that a frame is not specified or would not make sense.






	
score

	The 6th column (score), giving some numerical score for the feature. Its value
is a float, or '.' in case that a score is not specified or would not make sense






	
attr

	The last (9th) column of a GFF file contains attributes, i.e. a list of name/value pairs.
These are transformed into a dict, such that, e.g., gf.attr['gene_id'] gives the value
of the attribute gene_id in the feature described by GenomicFeature object gf.
The parser for the attribute field is reasonably flexible to deal with format variations
(it was never clearly established whetehr name and value should be sperarated by a colon or an
equal sign, and whether quotes need to be used) and also does a URL style decoding, as is often
required.








In order to write a GFF file from a sequence of features, this method is provided:



	
get_gff_line(with_equal_sign=False)

	Returns a line to describe the feature in the GFF format. This works even if the optional
attributes given above are missing. Call this for each of your GenomicFeature objects
and write the lines into a file to get a GFF file.













	
HTSeq.parse_GFF_attribute_string(attrStr, extra_return_first_value=False)

	This is the function that GFF_Reader uses to parse the attribute column. (See GenomicFeature.attr.)
It returns a dict, or, if requested, a pair of the dict and the first value.











          

      

      

    

  

    
      
          
            
  
Other parsers


VCF_Reader and VariantCall

VCF is a text file format (most likely stored in a compressed manner). It contains meta-information lines, a header line, and then data lines each containing information about a position in the genome.

There is an option whether to contain genotype information on samples for each position or not.

See the definitions at

As usual, there is a parser class, called VCF_Reader, that can generate an
iterator of objects describing the structural variant calls. These objects are of type VariantCall
and each describes one line of a VCF file. See below for an example.


	
class HTSeq.VCF_Reader(filename_or_sequence)

	As a subclass of FileOrSequence, VCF_Reader can be initialized either
with a file name or with an open file or another sequence of lines.

When requesting an iterator, it generates objects of type VariantCall.



	
metadata

	VCF_Reader skips all lines starting with a single ‘#’ as this marks
a comment. However, lines starying with ‘##’ contain meta data (Information about filters, and the fields in the ‘info’-column).






	
parse_meta(header_filename = None)

	The VCF_Reader normally does not parse the meta-information and also the VariantCall does not contain unpacked metainformation. The function parse_meta reads the header information either from the attached FileOrSequence or from a file connection being opened to a provided ‘header-filename’. This is important if you want to access sample-specific information for the :class`VariantCall`s in your .vcf-file.






	
make_info_dict()

	This function will parse the info string and create the attribute infodict which contains a dict
with key:value-pairs containig the type-information for each entry of the VariantCall‘s info field.













	
class HTSeq.VariantCall(line, nsamples = 0, sampleids=[])

	A VariantCall object always contains the following attributes:



	
alt

	The alternative base(s) of the VariantCall. This is a list containing all called alternatives.






	
chrom

	The Chromosome on which the VariantCall was called.






	
filter

	This specifies if the VariantCall passed all the filters given in the .vcf-header (value=PASS) or
contains a list of filters that failed (the filter-id’s are specified in the header also).






	
format

	Contains the format string specifying which per-sample information is stored
in VariantCall.samples.






	
id

	The id of the VariantCall, if it has been found in any database, for unknown variants this will be
”.”.






	
info

	This will contain either the string version of the info field for this VariantCall or a dict with the
parsed and processed info-string.






	
pos

	A HTSeq.GenomicPosition that specifies the position of the VariantCall.






	
qual

	The quality of the VariantCall.






	
ref

	The reference base(s) of the VariantCall.






	
samples

	A dict mapping sample-id’s to subdicts which use the VariantCall.format as
keys to store the per-sample information.






	
unpack_info(infodict)

	This function parses the info-string and replaces it with a dict rperesentation if the infodict of the
originating VCF_Reader is provided.












Example Workflow for reading the dbSNP in VCF-format (obtained from dbSNP <ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/v4.0/00-All.vcf.gz>_):

>>> vcfr = HTSeq.VCF_Reader( "00-All.vcf.gz" ) 
>>> vcfr.parse_meta() 
>>> vcfr.make_info_dict() 
>>> for vc in vcfr: 
...    print vc,
1:10327:'T'->'C'
1:10433:'A'->'AC'
1:10439:'AC'->'A'
1:10440:'C'->'A'





FIXME The example above is not run, as the example file is still missing!




Wiggle Reader

The Wiggle format [http://genome.ucsc.edu/goldenPath/help/wiggle.html] (file extension often .wig) is a format to describe numeric scores assigned to base-pair positions on a genome.
The class WiggleReader is parser for such files.


	
class HTSeq.WiggleReader(filename_or_sequence, verbose=True)

	The class is instatiated with the file name of a Wiggle file, or a sequence of lines in Wiggle format. A WiggleReader
object generates an iterator, which yields pairs of the form (iv, score), where iv is a GenomicInterval
object and score is a float with the score that the file assigns to the specified interval. If verbose is set to
True, the user is alerted to skipped lines (comments or browser lines) by a message printed to the standard output.








BED Reader

The BED format [http://genome.ucsc.edu/FAQ/FAQformat.html#format1]  is a format originally used to describe gene models but is also commonly used to describe other genomic features.


	
class HTSeq.BED_Reader(filename_or_sequence)

	The class is instatiated with the file name of a BED file, or a sequence of lines in BED format. A BED_Reader
object generates an iterator, which yields a GenomicFeature object for each line in the BED file (except for
lines starting with track, whcih are skipped).

The attributes of the yielded GenomicFeature objects are as follows:


	iv

	a GenomicInterval object with the coordinates as given by the 1st, 2nd, 3rd, and 6th column of the BED file. If the
BED file has less than 6 columns, the strand is set to “.”.

	name

	the name of feature as given in the 4th column, or unnamed, if the file has only three columns

	type

	always the string BED line

	score

	a float with the score as given by the 5th column (or None if the BED file has less 5 columns).

	thick

	a GenomicInterval object containg the “thick” part of the feature, as specified by the 6th and 7th column, with chromosome
and strand copied from iv (or None if the BED file has less 7 columns).

	itemRgb

	a list of three int values, taken from the 8th column (None if the BED file has less 8 columns). In a BED file, this triple
is meant to specify the colour in which the feature should be drawn in a browser.













          

      

      

    

  

    
      
          
            
  
Miscellaneous


FileOrSequence


	
class HTSeq.FileOrSequence(filename_or_sequence)

	This class is a a canvenience wrapper around a file.

The construcutor takes one argument, which may either be a string,
which is interpreted as a file name (possibly with path), or a
connection, by which we mean a text file opened for reading, or
any other object that can provide an iterator over strings
(lines of the file).

The advantage of passing a file name instead of an already opened file
is that if an iterator is requested several times, the file will be
re-opened each time. If the file is already open, its lines can be read
only once, and then, the iterator stays exhausted.

Furthermore, if a file name is passed that end in ”.gz” or ”.gzip”
(case insensitive), it is transparently gunzipped.


	
fos

	The argument passed to the constructor, i.e., a filename or a sequence






	
line_no

	The line number (1-based) of the most recently read line. Initially None.






	
get_line_number_string()

	Returns a string describing the position in the file. Useful for error messages.












Version


	
HTSeq.__version__

	a string containing the current version











          

      

      

    

  

    
      
          
            
  
Quality Assessment with htseq-qa

The Python script htseq-qa takes a file with sequencing reads (either
raw or aligned reads) and produces a PDF file with useful plots to assess
the technical quality of a run.


Plot

Here is a typical plot:

[image: _images/qa_example.png]
The plot is made from a SAM file, which contained aligned and unalignable reads.
The left column is made from the non-aligned, the right column from the aligned
reads. The header informs you about the name of the SAM file, and the number of
reads.

The upper row shows how often which base was called for each position in the
read. In this sample, the non-alignable reads have a clear excess in A. The
aligned reads have a balance between complementing reads: A and C (reddish colours)
have equal levels, and so do C and G (greenish colours). The sequences seem to be AT
rich. Furthermore, nearly all aligned reads start with a T, followed by an A, and then,
a C in 70% and an A in 30% of the reads. Such an imbalance would be reason for concern
if it has no good explanation. Here, the reason is that the fragmentation of the sample
was done by enzyme digestion.

The lower half shows the abundance of base-call quality scores at the different positions
in the read. Nearly all aligned reads have a quality of 34 over their whole length, while
for the non-aligned reads, some reads have lower quality scores towards their ends.




Usage

Note that htseq-qa needs matplotlib to produce the plot, so you need to install this
module, as described here [http://matplotlib.sourceforge.net/users/installing.html] on the matplotlib web site.

After you have installed HTSeq (see Prequisites and installation) and matplotlib, you can run htseq-qa from
the command line:

htseq-qa [options] read_file





If the file htseq-qa is not in your path, you can, alternatively, call the script with

python -m HTSeq.scripts.qa [options] read_file





The read_file is either a FASTQ file or a SAM file. For a SAM file, a plot with two columns
is produced as above, for a FASTQ file, you get only one column.

The output is written into a file with the same name as read_file, with the suffix .pdf
added. View it with a PDF viewer such as the Acrobat Reader.


Options


	
-t <type>, --type=<type>

	The file type of the read_file. Supported values for <type> are:


	sam: a SAM file (Note that the SAMtools [http://samtools.sourceforge.net/] contain Perl scripts to convert
most alignment formats to SAM)

	solexa-export: an _export.txt file as produced by the SolexaPipeline
software after aligning with Eland (htseq-qa expects the new Solexa quality
encoding as produced by version 1.3 or newer of the SolexaPipeline)

	fastq: a FASTQ file with standard (Sanger or Phred) quality encoding

	solexa-fastq: a FASTQ file with Solexa quality encoding, as produced by
the SolexaPipeline after base-calling with Bustard (htseq-qa expects
the new Solexa quality encoding as produced by version 1.3 or newer
of the SolexaPipeline)








	
-o <outfile>, --outfile=<outfile>

	output filename (default is <read_file>``.pdf``)






	
-r <readlen>, --readlength=<readlen>

	the maximum read length (when not specified, the
script guesses from the file






	
-g <gamma>, --gamma=<gamma>

	the gamma factor for the contrast adjustment of the
quality score plot






	
-n, --nosplit

	do not split reads in unaligned and aligned ones, i.e., produce
a one-column plot






	
-m, --maxqual

	the maximum quality score that appears in the data (default: 40)






	
-h, --help

	Show a usage summary and exit













          

      

      

    

  

    
      
          
            
  
Counting reads in features with htseq-count

Given a file with aligned sequencing reads and a list of genomic
features, a common task is to count how many reads map to each feature.

A feature is here an interval (i.e., a range of positions) on a chromosome
or a union of such intervals.

In the case of RNA-Seq, the features are typically genes, where each gene
is considered here as the union of all its exons. One may also consider
each exon as a feature, e.g., in order to check for alternative splicing.
For comparative ChIP-Seq, the features might be binding region from a
pre-determined list.

Special care must be taken to decide how to deal with reads that align to or
overlap with more than one feature. The htseq-count script allows to
choose between three modes. Of course, if none of these fits your needs,
you can write your own script with HTSeq. See the chapter A tour through HTSeq for a
step-by-step guide on how to do so. See also the FAQ at the end, if the
following explanation seems too technical.

The three overlap resolution modes of htseq-count work as follows. For
each position i in the read, a set S(i) is defined as the set of all
features overlapping position i. Then, consider the set S, which is
(with i running through all position within the read or a read pair)


	the union of all the sets S(i) for mode union. This mode is recommended for most use cases.

	the intersection of all the sets S(i) for mode intersection-strict.

	the intersection of all non-empty sets S(i) for mode intersection-nonempty.



If S contains precisely one feature, the read (or read pair) is counted for this feature. If
S is empty, the read (or read pair) is counted as no_feature. If S
contains more than one feature, htseq-count behaves differently based on
the --nonunique option:


	--nonunique none (default): the read (or read pair) is counted as
ambiguous and not counted for any features. Also, if the read (or read
pair) aligns to more than one location in the reference, it is scored as
alignment_not_unique.

	--nonunique all: the read (or read pair) is counted as ambiguous
and is also counted in all features to which it was assigned. Also, if the
read (or read pair) aligns to more than one location in the reference, it is
scored as alignment_not_unique and also separately for each location.



Notice that when using --nonunique all the sum of all counts will not
be equal to the number of reads (or read pairs), because those with multiple
alignments or overlaps get scored multiple times.

The following figure illustrates the effect of these three modes and the
--nonunique option:

[image: _images/count_modes.png]

Usage

After you have installed HTSeq (see Prequisites and installation), you can run htseq-count from
the command line:

htseq-count [options] <alignment_files> <gff_file>





If the file htseq-count is not in your path, you can, alternatively, call the script with

python -m HTSeq.scripts.count [options] <alignment_files> <gff_file>





The <alignment_files> are one or more files containing the aligned reads in SAM format.
(SAMtools [http://www.htslib.org/] contain Perl scripts to convert most alignment formats to SAM.)
Make sure to use a splicing-aware aligner such as STAR [https://github.com/alexdobin/STAR]. HTSeq-count makes
full use of the information in the CIGAR field.

To read from standard input, use - as <alignment_files>.

If you have paired-end data, pay attention to the -r option described below.

The <gff_file> contains the features in the GFF format [http://www.sanger.ac.uk/resources/software/gff/spec.html].

The script outputs a table with counts for each feature, followed by
the special counters, which count reads that were not counted for any feature
for various reasons. The names of the special counters all start with
a double underscore, to facilitate filtering. (Note: The double unscore
was absent up to version 0.5.4). The special counters are:


	__no_feature: reads (or read pairs) which could not be assigned to any feature
(set S as described above was empty).

	__ambiguous: reads (or read pairs) which could have been assigned to more than
one feature and hence were not counted for any of these, unless the
--nonunique all option was used (set S had more than one element).

	__too_low_aQual: reads (or read pairs) which were skipped due to the -a
option, see below

	__not_aligned: reads (or read pairs) in the SAM file without alignment

	__alignment_not_unique: reads (or read pairs) with more than one reported alignment.
These reads are recognized from the NH optional SAM field tag.
(If the aligner does not set this field, multiply aligned reads will
be counted multiple times, unless they getv filtered out by due to the -a option.)
Note that if the --nonunique all option was used, these reads (or read pairs)
are still assigned to features.



Important: The default for strandedness is yes. If your RNA-Seq data has not been made
with a strand-specific protocol, this causes half of the reads to be lost.
Hence, make sure to set the option --stranded=no unless you have strand-specific
data!


Options


	
-f <format>, --format=<format>

	Format of the input data. Possible values are sam (for text SAM files)
and bam (for binary BAM files). Default is sam.






	
-r <order>, --order=<order>

	For paired-end data, the alignment have to be sorted either by read name or
by alignment position. If your data is not sorted, use the samtools sort
function of samtools to sort it. Use this option, with name or pos
for <order> to indicate how the input data has been sorted. The default
is name.

If name is indicated, htseq-count expects all the alignments for the
reads of a given read pair to appear in adjacent records in the input data.
For pos, this is not expected; rather, read alignments whose mate alignment
have not yet been seen are kept in a buffer in memory until the mate is found.
While, strictly speaking, the latter will also work with unsorted data, sorting
ensures that most alignment mates appear close to each other in the data
and hence the  buffer is much less likely to overflow.






	
--max-reads-in-buffer=<number>

	When <alignment_file> is paired end sorted by position, allow only so many
reads to stay in memory until the mates are found (raising this number will use
more memory). Has no effect for single end or paired end sorted by name.
(default: 30000000)






	
-s <yes/no/reverse>, --stranded=<yes/no/reverse>

	whether the data is from a strand-specific assay (default: yes)

For stranded=no, a read is considered overlapping with a feature regardless
of whether it is mapped to the same or the opposite strand as the feature.
For stranded=yes and single-end reads, the read has to be mapped to the same
strand as the feature. For paired-end reads, the first
read has to be on the same strand and the second read on the opposite strand.
For stranded=reverse, these rules are reversed.






	
-a <minaqual>, --a=<minaqual>

	skip all reads with alignment quality lower than the given
minimum value (default: 10 — Note: the default used to be 0 until
version 0.5.4.)






	
-t <feature type>, --type=<feature type>

	feature type (3rd column in GFF file) to be used, all
features of other type are ignored (default, suitable
for RNA-Seq analysis using an Ensembl GTF [http://mblab.wustl.edu/GTF22.html] file: exon)






	
-i <id attribute>, --idattr=<id attribute>

	GFF attribute to be used as feature ID. Several GFF lines with the same
feature ID will be considered as parts of the same feature. The feature ID
is used to identity the counts in the output table. The default, suitable
for RNA-Seq analysis using an Ensembl GTF file, is gene_id.






	
--additional-attr=<id attributes>

	Additional feature attributes, which will be printed as an additional column
after the primary attribute column but before the counts column(s). The
default is none, a suitable value to get gene names using an Ensembl GTF
file is gene_name.






	
-m <mode>, --mode=<mode>

	Mode to handle reads overlapping more than one feature. Possible values for
<mode> are union, intersection-strict and intersection-nonempty
(default: union)






	
--nonunique=<nonunique mode>

	Mode to handle reads that align to or are assigned to more than one feature
in the overlap <mode> of choice (see -m option). <nonunique mode> are
none and all (default: none)






	
--secondary-alignments=<mode>

	Mode to handle secondary alignments (SAM flag 0x100). <mode> can be
score and ignore (default: score)






	
--supplementary-alignments=<mode>

	Mode to handle supplementary/chimeric alignments (SAM flag 0x800). <mode>
can be score and ignore (default: score)






	
-o <samout>, --samout=<samout>

	write out all SAM alignment records into an output SAM
file called <samout>, annotating each line with its
assignment to a feature or a special counter
(as an optional field with tag ‘XF’)






	
-q, --quiet

	suppress progress report and warnings






	
-h, --help

	Show a usage summary and exit








Frequenctly asked questions


	My shell reports “command not found” when I try to run “htseq-count”. How can I launch the script?

	The file “htseq-count” has to be in the system’s search path [http://en.wikipedia.org/wiki/PATH_(variable)]. By default, Python places it
in its script directory, which you have to add to your search path. A maybe easier alternative
is to write python -m HTSeq.scripts.count instead of htseq-count, followed by the
options and arguments, which will launch the htseq-count script as well.




	Why are multi-mapping reads and reads overlapping multiple features discarded rather than counted for each feature?

	The primary intended use case for htseq-count is differential expression analysis, where
one compares the expression of the same gene across samples and not the expression of different
genes within a sample. Now, consider two genes, which share a stretch of common sequence
such that for a read mapping to this stretch, the aligner cannot decide which of the two genes
the read originated from and hence reports a multiple alignment. If we discard all such reads,
we undercount the total output of the genes, but the ratio of expression strength (the “fold
change”) between samples or experimental condition will still be correct, because we discard the
same fratcion of reads in all samples. On the other hand, if we counted these reads for both
genes, a subsequent diffential-expression analysis might find false positives: Even if only one of the
gene changes increases its expression in reaction to treatment, the additional read caused by this
would be counted for both genes, giving the wrong appearance that both genes reacted to the treatment.

	I have used a GTF file generated by the Table Browser function of the UCSC Genome Browser, and most reads are counted as ambiguous. Why?

	In these files, the gene_id attribute incorrectly contains the same value as the transcript_id
attribute and hence a different value for each transcript of the same gene. Hence, if a read maps to
an exon shared by several transcripts of the same gene, this will appear to htseq-count as and
overlap with several genes. Therefore, these GTF files cannot be used as is. Either correct the
incorrect gene_id attributes with a suitable script, or use a GTF file from a different source.

	Can I use htseq-count to count reads mapping to transcripts rather than genes?

	In principle, you could instruct htseq-count to count for each of a gene’s transcript individually, by
specifying --idattr transcript_id. However, all reads mapping to exons shared by several
transcripts will then be considered ambiguous. (See second question.) Counting them for each transcript
that contains the exons would be possible but makes little sense for typical use cases. (See first
question.) If you want to perform differential expression analysis on the level of
individual transcripts, maybe ahve a look at our paper on DEXSeq [http://dx.doi.org/10.1101/gr.133744.111] for a discussion on why we
prefer performing such analyses on the level of exons instead.




	For paired-end data, does htseq-count count reads or read pairs?

	Read pairs. The script is designed to count “units of evidence” for gene expression. If both mates map
to the same gene, this still only shows that one cDNA fragment originated from that gene. Hence, it
should be counted only once.

	What happens if the two reads in a pair overlap two different features?

	The same as if one read overlaps two features: The read or read pair is counted as ambiguous.

	What happend if the mate of an aligned read is not aligned?

	For the default mode “union”, only the aligned read determines how the read pair is counted. For the
other modes, see their description.

	Most of my RNA-Seq reads are counted as ``__no_feature``. What could have gone wrong?

	Common causes include:
- The --stranded option was set wrongly. Use a genome browser (e.g., IGV) to check.
- The GTF file uses coordinates from another reference assembly as the SAM file.
- The chromosome names differ between GTF and SAM file (e.g., chr1 in one file and jsut 1 in the other).

	Which overlap mode should I use?

	When I wrote htseq-count, I was not sure which option is best and included three possibilities. Now,
several years later, I have seen very few cases where the default union would not be appropriate
and hence tend to recommend to just stick to union.

	I have a GTF file? How do I convert it to GFF?

	No need to do that, because GTF is a tightening of the GFF format. Hence, all GTF files are GFF files, too.
By default, htseq-count expects a GTF file.

	I have a GFF file, not a GTF file. How can I use it to count RNA-Seq reads?

	The GTF format specifies, inter alia, that exons are marked by the word exon in the third column and
that the gene ID is given in an attribute named gene_id, and htseq-count expects these words to be used
by default. If you GFF file uses a word other than exon in its third column to mark lines describing
exons, notify htseq-count using the --type option. If the name of the attribute containing the
gene ID for exon lines is not gene_id, use the --idattr. Often, its is, for example,
Parent, GeneID or ID. Make sure it is the gene ID and not the exon ID.

	How can I count overlaps with features other than genes/exons?

	If you have GFF file listing your features, use it together with the --type and --idattr options.
If your feature intervals need to be computed, you are probably better off writing your own
counting script (provided you have some knowledge of Python). Follow the tutorial in the other pages
of this documentation to see how to use HTSeq for this.

	How should I cite htseq-count in a publication?

	Please cite HTSeq as follows: S Anders, T P Pyl, W Huber: HTSeq — A Python framework to work with
high-throughput sequencing data. bioRxiv 2014. doi: 10.1101/002824 [http://dx.doi.org/10.1101/002824].
(This is a preprint currently under review. We will replace this with the reference to the final
published version once available.)











          

      

      

    

  

    
      
          
            
  
Version history


Version 0.8.0

2017-07-11

This release adds a few options to htseq-count:


	--secondary-alignments handles secondary alignments coming from the same read

	--supplementary-alignments handles supplementary alignments (aka chimeric reads)



Raw but fast iterators for FASTA and FASTQ files have been added.

Support for the SAM CIGAR flags = and X (sequence match and mismatch) has been added.

Sequence objects can now be pickled/serialized.

Binaries for linux and OSX are now provided on PyPI.

Automation of the release process has been greatly extended, including OSX continuous integration builds.

Several bugs have been fixed, and some parts of the code have been linted or modernized.




Version 0.8.0

2017-06-07

This release adds a few options to htseq-count:


	--nonunique handles non-uniquely mapped reads

	--additional-attr adds an optional column to the output (typically for human-readable gene names)

	--max-reads-in-buffer allows increasing the buffer size when working with paired end, coordinate sorted files



Moreover, htseq-count can now take more than one input file and prints the output with one column per input file.

Finally, parts of the code have been streamlined or modernized, documentation has been moved to readthedocs,
and other minor changes.




Version 0.7.2

2017-03-24

This release effectively merges the Python2 and Python3 branches.

Enhancements:


	pip install HTSeq works for both Python 2.7 and 3.4+






Version 0.7.1

2017-03-16

Enhancements:


	installs from PyPI






Version 0.7.0

2017-02-07

Enhancements:


	understands SAMtools optional field B (used sometimes in STAR aligner)

	write fasta files in a single line

	better docstrings thanks to SWIG 3



Bugfixes:


	fixed tests and docs in .rst files



Support bumps:


	supports pysam >=0.9.0



New maintainer: Fabio Zanini.




Version 0.6.1

2014-02-27


	added parser classes for BED and Wiggle format



Patch versions:


	0.6.1p1 (2014-04-13)
	Fixed incorrect version tag





	0.6.1p2 (2014-08-09)
	some improvements to documentation










Version 0.6.0

2014-02-26


	Several changes and improvements to htseq-count:
	BAM files can now be read natively. (New option --format)

	Paired-end SAM files can be used also if sorted by position. No need any mroe to sort by name. (New option --order.)

	Documentation extended by a FAQ section.

	Default for --minaqual is now 10. (was: 0)





	New chapter in documentation, with more information on counting reads.

	New function pair_SAM_alignments_with_buffer to implement pairing for position-sorted SAM files.






Version 0.5.4

2013-02-20

Various bugs fixed, including



	GFF_Reader interpreted the constructor’s “end_included” flag
in the wrong way, hence the end position of intervals of
GFF features was off by 1 base pair before

	htseq-count no longer warns about missing chromosomes, as this
warning was often misleading. Also, these reads are no properly
included in the “no_feature” count.

	default for “max_qual” in “htseq-qa” is now 41, to accommodate newer
Illumina FASTQ files

	BAM_Reader used to incorrectly label single-end reads as paired-end






Patch versions:


	v0.5.4p1 (2013-02-22):
	changed default for GFF_Reader to end_included=True, which is actually the
correct style for Ensemble GTF files. Now the behavious should be as it
was before.





	v0.5.4p2 (2013-04-18):
	fixed issue blocking proper built on Windows





	v0.5.4p3 (2013-04-29):
	htseq-count now correctly skips over “M0” cigar operations





	v0.5.4p4 (2013-08-28):
	added .get_original_line() function to VariantCall

	firex a bug with reads not being read as paired if they were not
flagged as proper pair





	v0.5.4p5 (2013-10-02/2013-10-10):
	parsing of GFF attribute field no longer fails on quoted semicolons

	fixed issue with get_line_number_string










Version 0.5.3

2011-06-29


	added the ‘–stranded=reverse’ option to htseq-count



Patch versions:


	v0.5.3p1 (2011-07-15):
	fix a bug in pair_sam_Alignment (many thanks for Justin Powell for
finding the bug and suggesting a patch)





	v0.5.3p2 (2011-09-15)
	fixed a bug (and a documentation bug) in trim_left/right_end_with_quals





	v0.5.3p3 (2011-09-15)
	p2 was built improperly





	v0.5.3p5 (2012-05-29)
	added ‘to_line’ function to VariantCall objects and ‘meta_info’ function to VCF_Reader objects to print VCF-lines / -headers respectively





	v0.5.3p5b (2012-06-01)
- added ‘flag’ field to SAM_Alignment objects and fixed ‘get_sam_line’ function of those

	v0.5.3p6 (2012-06-11)
- fixed mix-up between patches p3, p4 and p5

	v0.5.3p7 (2012-06-13)
- switched global pysam import to on-demand version

	v0.5.3p9ur1 (2012-08-31)
- corrected get_sam_line: tab isntead of space between optional fields






Version 0.5.2

2011-06-24


	added the ‘–maxqual’ option to htseq-qa






Version 0.5.1

2011-05-03


	added steps method to GenomicArray



Patch versions:


	v0.5.1p1 (2011-05-11):
	fixed a bug in step_vector.h causing linkage failure under GCC 4.2





	v0.5.1p2 (2011-05-12):
	fixed pickling





	v0.5.1p3 (2011-05-22):
	fixed quality plot in htseq-qa (top pixel row, for quality score 40, was cut off)










Version 0.5.0

2011-04-21


	refactoring of GenomicArray class:
	field step_vectors replaced with chrom_vector. These now contain
dicts of dicts of ChromVector objects rather than StepVector ones.

	chrom_vectors is now always a dict of dict, even for unstranded GenomicArrays
to make it easier to loop over them. (The inner dict has either keys "+"
and "-", or just one key, ".".)

	The new ChromVector class wraps the actual vector and supports three different
storage modes: step, ndarray and memmap, the latter two being numpy
arrays, without and with memory mapping.

	The GenomicArray constructor now take two new arguments, one for the storage
class, one for the memmap directory (if needed).

	The add_value methods had been replaced with an __iadd__ method, to
enable the += semantics.

	Similarily, += for GenomicArrayOfSets adds an element to the sets.

	Instead of get_steps, now use steps.





	new parser class VCF_Reader and record class VariantCall

	new parser class BAM_Reader, to add BAM support (including indexed random access)
(requires PySam to be installed)

	new documentation page A detailed use case: TSS plots

	Fasta_Reader now allows indexed access to Fasta files (requires Pysam to be
installed)

	peek function removed



Patch Versions:


	v0.5.0p1  (2011-04-22):
	build was incomplete; fixed





	v0.5.0p2 (2011-04-22):
	build was still faulty; new try





	v0.5.0p3 (2011-04-26)
	fixed regression bug in htseq-count










Version 0.4.7

2010-12-22


	added new option -o (or --samout) to htseq-count



Patch versions:


	Version 0.4.7p1 (2011-02-14)
	bug fix: GFF files with empty attribute fiels are now read correctly





	Version 0.4.7p2 (2011-03-13)
	fixed assertion error in pair_SAM_alignment, triggered by incorrect flags





	Version 0.4.7p3 (2011-03-15)
	fixed problem due to SAM_Alignment.peek (by removing the method)





	Version 0.4.7p4 (2011-03-18)
	removed left-over debugging print statement










Version 0.4.6

2010-12-09


	pair_SAM_alignments now handles multiple matches properly

	SAM_Alignments now allows access to optional fields via the new methods
optional_field and optional_fields

	htseq-count now skips reads that are non-uniquely mapped according to the ‘NH’
optional field

	updated documentation



Patch versions:


	Version 0.4.6p1 (2010-12-17)
	updated htseq-count documentation page

	htseq-count now accepts ‘-‘ as SAM file name





	Version 0.4.6p2 (2012-12-21)
	corrected a bug in htseq-count regarding the handling of warnings and
added SAM_Reader.peek.










Version 0.4.5

2010-08-30


	correction to GenomicArray.get_steps() when called without arguments

	correction to FileOrSequence.get_line_number_string

	removed use of urllib’s quote and unquote in GFF parsing/writing

	GFF_Reader now stores “meta information”

	qa.py now gives progress report

	auto add chrom now also works on read access

	refactored CIGAR parser

	added bool fields to SAM_Alignment for all flag bits



Patch versions:


	Version 0.4.5p1 (2010-10-08)
	correction of a mistake in CIGAR checking, misreading symbol “N”





	Version 0.4.5p2 (2010-10-13)
	Sequence.add_bases_to_count_array and hence htseq-qa now
accepts ‘.’ instead of ‘N’ in a fastq file





	Version 0.4.5p3 (2010-10-20)
	fixed error reporting for PE in htseq-count





	Version 0.4.5p4 (2010-10-21)
	fixed another error reporting for PE in htseq-count





	Version 0.4.5p5 (2010-10-28)
	Not only ‘N’ but also ‘S’ was read the wrong way. Fixed.

	Cython had some odd way handling properties overloading attributes,
which caused issues with ‘Alignment.read’. Worked around.





	Version 0.4.5p6 (2010-11-02)
	write_to_fastq should not break lines. Fixed.





	Version 0.4.5p7 (2010-11-16)
	added fallback to distutils in case setuptools in unavailable

	fixed documentation of ‘-a’ option to htseq-count










Version 0.4.4

2010-05-19


	StepVectors (and hence also GenomicArrays) now notice if, when setting the
value of a step, this value is equal to an adjacent step and merge the steps.

	GenomicArray’s constructor now allows the special value "auto" for its
first arguments in order to start without chromosomes and automatically add
them when first encountered.



Patch versions:


	Version 0.4.4p1 (2010-05-26):
	minor change to make it run on Python 2.5 again

	changed ‘str’ to ‘bytes’ at various places, now compiles with Cython 0.12
(but no longer with Cython 0.11 and Python 2.5)





	Version 0.4.4p2 (2010-06-05):
	change to SAM parser: if flag “query unmapped is set” but RNAME is not
“*”, a warning (rather than an error) is issued





	Version 0.4.4p3 (2010-06-25)
	again removed an “except sth as e”





	Version 0.4.4p4 (2010-07-12)
	dto.





	Version 0.4.4p5 (2010-07-13)
	rebuilt with Cython 0.12.1 (previous one was accidently built with
Cython 0.11.1, causing it to fail with Python 2.5)





	Version 0.4.4p6 (2010-07-21)
	fixed bug in error reporting in count.py

	losened GFF attribute parsing

	changed “mio” to “millions” in qa output

	improved error reporting in GFF parser

	made SAM parsing more tolerant










Version 0.4.3

2010-05-01

New argument to constructer of GFF_Reader: end_include


	Version 0.4.3-p1 (2010-05-04): version number was messed up; fixed

	Version 0.4.3-p2 (2010-05-15): fixed ‘-q’ option in htseq-count

	Version 0.4.3-p3 (2010-05-15): parse_GFF_attribute_string can now deal with
empty fields; score treated as float, not int

	Version 0.4.3-p3 (2010-05-15):
- parse_GFF_attribute_string can now deal with empty fields;
score treated as float, not int
- fixed bug in SAM_Reader: can now deal with SAM files with 11 columns
- SAM_Alignment._tags is now a list of strings

	Version 0.4.3-p4 (2010-05-16):
bumped version number again just to make sure






Version 0.4.2

2010-04-19

Bug fixes to htseq-count and pair_SAM_alignments. Bumped version number to avoid
confusion.


	Version 0.4.2-p1 (2010-04-20): there was still a bug left in htseq-count, fixed.

	Version 0.4.2-p2 (2010-04-26): bug fix: adapter trimming failed if the adapter
was completely included in the sequence

	Version 0.4.2-p3

	Version 0.4.2-p4 (2010-04-29): bug fix: error in warning when htseq-count
encountered an unknown chromosome

	Version 0.4.2-p5 (2010-04-30): bug fixes: error in warning when PE positions
are mismatched, and misleading error when calling get_steps with unstranded
interval in a stranded array






Version 0.4.1

2010-04-19

Bug fixes:


	Fixed bug in htseq-count: CIGAR strings with gaps were not correctly handled

	Fixed bug in Tour (last section, on counting): An wrong indent, and accidental
change to the exons variable invalidated data.

	SolexaExportReader no longer complains about multiplexing (indexing) not being supported.

	Mention link to example data in Tour.

	Fix installation instructions. (--user does not work for Python 2.5.)



Enhancements:


	Paired-end support for SAM_Alignment.

	“_as_pos” attributes for GenomicInterval






Version 0.4.0

2010-04-07

First “official” release, i.e., uploaded to PyPI and announced at SeqAnswers




Version 0.3.7

2010-03-12

First version that was uploaded to PyPI







          

      

      

    

  

    
      
          
            
  
Notes for Contributors

If you intend to contribute to the development of HTSeq, these notes will
help you to get started.


Source code

The source code is on Github [https://github.com/simon-anders/htseq]. To check out the repository, use

git clone https://github.com/simon-anders/htseq.git








Languages

HTSeq is mostly written in Python and is compatible with both Python 2.7 and
Python 3.4 and above. However, the codebases for Python 2/3 are separate and
development happens mainly on the Python 3 branch.

A good part of HTSeq is actually not written in Python but in
Cython [http://www.cython.org/]. In case you don’t know it yet: Cython, a fork from Pyrex, is a
kind of Python compiler. You annotate Python code with additional type
informations (the lines starting with cdef in the source code). Cython
will then transform the Cython source file (with extension pyx) into
a C file, which calls the appropriate funnctions of Python’s C API. Without
type annotation, this looks and feels the same as normal Python and is not
really faster, either. With type annotation, significant performance gains
are possible, especially in inner loops.

A small part, namely the StepVector class, is written in C++ and exported with
SWIG. (SWIG [http://www.swig.org/], the “Simple Wrapper and Interface Generator” is a very useful
tool to generate C/C++ code to wrap an existing C/C++ library such that it
becomes accessible as a native library within a number of scripting languages.)
I am not so happy with this any more (the abstraction panelty of the object-oriented
SWIG wrapping turned out to be a bit high) and ultimatively want to rewrite this
part.




Build process

HTSeq follows the standard python packaging guidelines and relies on a
setup.py script that is simultaneously compatible withPython 2 and 3. To
build the code, run:

python setup.py build





and to install:

python setup.py install





If you are not modifying the low-level C/C++/Cython interfaces, you can do
without Cython and SWIG. This is how users normally install HTSeq using
pip. If you do modify those files, the setup.py has a preprocessing
step that calls Cython and/or SWIG if these programs are found. You set
the SWIG and CYTHON environment variables to point to your executables
if you have special requirements.

To test during development, HTSeq relies on Continuous Integration (CI), at
the moment Travis CI is set up.

To build the documentation, Sphinx [http://www.sphinx-doc.org/] was used. Just go into the appropriate
doc folder and call:

make html





to regenerate the documentation. Docs are stored on readthedocs [https://readthedocs.org/].




Distributing

To wrap up a package, call:

python setup.py sdist





This makes a directory dists and in there, a tarball with all the source
files (Python and C/C++). If you are a maintainer of HTSeq, you can upload
this file onto PyPI on the testing server. Then, you should run the Tracis CI
tests that try to install HTSeq directly from PyPI (without the source code).
If all goes well, you can upload the tar file onto the live PyPI server.




Files

The package contains source files for Python 2 and 3 in separate folders.
Within each of those folders, the following files are found:


	HTSeq/__init__.py:

	The outer face of HTSeq. This file defines the name space of HTSeq and contains
the definition of all classes without performance-critical methods. The file
imports _HTSeq in its own namespace, so that, for the user, it does not matter
whether an object is defined here or in _HTSeq.pyx.

	src/HTSeq/_HTSeq.pyx:

	The core of HTSeq. All classes with perfomance-critical methods are defined here.
For most of it, this file looks as a normal Python file. Only where performance
is critical, type annotation has been added. See the Cython manual for details.

	src/HTSeq/_HTSeq.pxd:

	The “header file” for _HTSeq.pyx. It contains the type annotation for all the
fields of the classes defined in _HTSeq.pyx. If a user would want to write her
own Cython code, she could use Cython’s cimport directive to import this header
file and so make Cython aware of the typed definitions of fields and methods in
_HTSeq.pyx, which may improve performance because it allows Cython to kick out
all unnecessary type checking.

	HTSeq/_HTSeq_internal.py:

	There are a few limitation to the standard Python code allowed in Cython files;
most importantly, the yield statement is not yet supported. Hence, _HTSeq.pyx
imports this file, and whenever a method in _HTSeq.pyx needs a yield,
it calls a function which is put in here.

	src/step_vector.h:

	The C++ step_vector class template. As this is a pure template, there is no
step_vector.cc file with definitions. If you want to use a step_vector in
a C++ project, this is all you need.

	src/StepVector.i:

	An input file to SWIG, which produces the Python wrapper around step_vector.h, i.e.,
the StepVector module containing the StepVector class. Note that this file contains
not only SWIG directives but also Python and come C++ code.

	src/AutoPyObjPtr.i:

	A very small SWIG library that allows SWIG-wrapped C++ container classes to
store Python objects in a way that Python’s garbage collector is happy with.

	HTSeq/scripts/count.py and HTSeq/scripts/qa.py:

	The source code for the stand-alone scripts htseq-count and htseq-qa.
They reside in the sub-package HTSeq.scripts, allowing to call the scripts
with, e.g., python -m HTSeq.scripts.qa.

	scripts/htseq-count and scripts/htseq-qa:

	Short stubs to call the scripts from the command line simply as, e.g., htseq-qa.

	doc/:

	this documentation, in Sphinx reStructuredText format, and a Makefile to drive
Sphinx.

	test/test.py

	Performs all the deoctests in the documentation, using the example data in the
example_data directory.



Furthermore, there are these files to support development:


	setup.py:

	A typical setuptools setup.py file.



Finally, there are these files


	VERSION:

	a one-line text-fil with the version number. It is read by setup.py, used
by build_it to generate the one-line Python file HTSeq/_version.py and
also used when building the documentation.

	MANIFEST.in:

	Brings some files to the attention of setup.py sdist which would otherwise not
be included

	LICENCE:

	The GPL, v3

	README.md:

	Points the user to the web site.



and these directories


	example_files/:

	a few example files to be use by the doctests in the documentation.
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